<table>
<thead>
<tr>
<th>Summary and Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>• EcoSmart™ – meets all existing and proposed energy efficiency standards including ErP.</td>
</tr>
<tr>
<td>• No-load consumption <30 mW; more than 300 mW available in stand-by with 500 mW input</td>
</tr>
<tr>
<td>• > 84% average active-mode efficiency – DOE6 and EC CoC (v5)</td>
</tr>
<tr>
<td>• The board can fit P/G or the cost-effective D package</td>
</tr>
<tr>
<td>• BP/M capacitor value selects power MOSFET current limit for greater design flexibility</td>
</tr>
<tr>
<td>• Accurate detection output overvoltage protection (OVP) using primary bias winding sensed shutdown feature</td>
</tr>
<tr>
<td>• Accurately tolerated I^2t parameter (-10%, +12%) reduces system cost</td>
</tr>
<tr>
<td>• Increases MOSFET and magnetics power delivery</td>
</tr>
<tr>
<td>• Reduces overload power, which lowers output diode and capacitor costs</td>
</tr>
<tr>
<td>• Integrated TinySwitch-4 safety / reliability features</td>
</tr>
<tr>
<td>• Accurate (±5%), auto-recovering, hysteretic thermal shutdown function maintains safe PCB temperatures under all conditions</td>
</tr>
<tr>
<td>• Auto-restart protects against output short-circuit and open loop fault conditions</td>
</tr>
<tr>
<td>• P and G package with >3.2 mm creepage on package enables reliable operation in high humidity and high pollution environments</td>
</tr>
<tr>
<td>• Meets EN550022 and CISPR-22 Class B conducted EMI with >12 dBµV margin</td>
</tr>
<tr>
<td>• Meets IEC61000-4-5 Class 3 AC line surge</td>
</tr>
</tbody>
</table>
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-property-licensing/.
Table of Contents

1. Introduction ... 5
2. Power Supply Specification ... 6
3. Schematic .. 7
4. Circuit Description .. 8
 4.1 Input Rectifier and Filter .. 8
 4.2 TNY288PG Operation ... 8
 4.3 Output Rectification and Filtering .. 9
 4.4 Feedback and Output Voltage Regulation .. 9
 4.5 Output Overvoltage Shutdown .. 9
 4.6 Undervoltage Lockout .. 9
 4.7 EMI Design Aspects ... 10
 4.8 ESD Design Aspects ... 10
5. PCB Layout .. 11
6. Bill of Materials .. 12
7. Transformer Specification ... 13
 7.1 Electrical Diagram ... 13
 7.2 Electrical Specifications ... 13
 7.3 Material List .. 13
 7.4 Transformer Build Diagram .. 14
 7.5 Transformer Instructions .. 14
 7.6 Transformer Winding Illustrations .. 15
9. Transformer Design Spreadsheet .. 19
10. Performance Data .. 22
 10.1 Efficiency .. 22
 10.1.1 Active Mode Measurement Data ... 22
 10.1.2 Full Load Efficiency vs. Line .. 23
 10.1.3 Efficiency vs. Load ... 24
 10.2 Available Standby Output Power .. 25
10.3 No-Load Input Power ... 27
10.4 Line Regulation ... 28
10.5 Load Regulation ... 29
11. Waveforms ... 30
 11.1 Load Transient Response .. 30
 11.1.1 0% - 100% Load Change ... 30
 11.1.2 50% - 100% Load Change .. 31
 11.2 Output Voltage at Start-up .. 32
 11.2.1 CC Mode ... 32
 11.2.2 CR Mode ... 34
 11.3 Switching Waveforms .. 36
 11.3.1 Primary MOSFET Drain-Source Voltage and Current at Normal Operation .36
 11.3.2 Primary MOSFET Drain-Source Voltage and Current at Start-up Operation 38
 11.3.3 Output Diode Voltage and Current at Normal Operation 40
 11.3.4 Output Diode Voltage and Current at Start-up Operation 42
11.4 Brown-In and Brown-Out ... 44
 11.4.1 Without UV Sensing ... 44
 11.4.2 With UV sensing ... 44
11.5 Fault Conditions .. 45
 11.5.1 Output Overvoltage ... 45
 11.5.2 Output Short Circuit ... 49
 11.5.3 Output Overload ... 50
11.6 Output Voltage Ripple ... 52
 11.6.1 Ripple Measurement Technique .. 52
 11.6.2 Measurement Results ... 53
 11.6.3 Output Ripple Voltage Graph from 0% - 100% 58
12 Thermal Performance .. 59
 12.1 Test Set-Up .. 59
 12.2 Thermal Performance at Room Temperature 60
 12.2.1 85 VAC at room temperature .. 60
 12.2.2 265 VAC at Room Temperature ... 61
 12.3 Thermal Performance at 50°C .. 62
 12.3.1 85 VAC at 50°C ... 62
 12.3.2 265 VAC at 50°C ... 63
 12.4 Over Temperature Protection .. 64
 12.4.1 OTP at 85 VAC ... 64
 12.4.2 OTP at 265 VAC ... 65
13 Conducted EMI .. 66
 13.1 Test Set-up Equipment ... 66
 13.1.1 Equipment and Load Used .. 66
 13.2 Test Set-up .. 66
 13.3 Test Results .. 67
14 Line Surge ... 68
 14.1 Differential and Common Mode Surge 68
 14.2 Ring Wave .. 69
 14.3 Electrical Fast Transient (EFT) ... 70
15 ESD ... 71
16 Revision History ... 72

Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.
1 Introduction

This engineering report describes an isolated flyback converter designed to provide a nominal output voltage of 12 V at 1 A load from a wide input voltage range of 85 VAC to 265 VAC. This adapter utilizes the TNY288P from the TinySwitch-4 family of ICs, with provision for D and K packages placed on the top layer.

This document contains the complete power supply specifications, bill of materials, transformer construction, circuit schematic and printed circuit board layout, along with performance data and electrical waveforms.
Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>V_{IN}</td>
<td>85</td>
<td>50/60</td>
<td>265</td>
<td>VAC</td>
<td>2 Wire – no P.E.</td>
</tr>
<tr>
<td>Frequency</td>
<td>f_{LINE}</td>
<td>47</td>
<td>50/60</td>
<td>64</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>No-load Input Power (230 VAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With Bias Winding Support w/o</td>
</tr>
<tr>
<td>No-load Input Power (230 VAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UVLO Resistor or Bias Winding.</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_{OUT}</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>V</td>
<td>± 8%</td>
</tr>
<tr>
<td>Output Ripple Voltage</td>
<td>V_{RIPPLE}</td>
<td>100</td>
<td></td>
<td></td>
<td>mV</td>
<td>20 MHz Bandwidth.</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{OUT}</td>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Total Output Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Output Power</td>
<td>P_{OUT}</td>
<td>12</td>
<td></td>
<td></td>
<td>W</td>
<td>With Bias Sense.</td>
</tr>
<tr>
<td>Overvoltage Shutdown</td>
<td>V_{OV}</td>
<td>14</td>
<td>16</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Load</td>
<td>η</td>
<td>84</td>
<td></td>
<td></td>
<td>%</td>
<td>Measured at P_{OUT} 25 °C</td>
</tr>
<tr>
<td>Required average efficiency at 25, 50, 75 and 100 % of P_{OUT}</td>
<td>η_{DOE}</td>
<td>83</td>
<td></td>
<td></td>
<td>%</td>
<td>Per DOE EISA2007 (Level VI) with TNY278 & Standard Current Limit</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conducted EMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meets CISPR22B / EN55022B</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Designed to meet IEC950, UL1950 Class II</td>
</tr>
<tr>
<td>Surge (Differential)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2/50 μs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω, Common Mode: 12 Ω</td>
</tr>
<tr>
<td>Surge (Common mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring Wave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air Discharge.</td>
</tr>
<tr>
<td>Electrical Fast Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact Discharge.</td>
</tr>
<tr>
<td>ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>T_{AMB}</td>
<td>0</td>
<td>50</td>
<td></td>
<td>°C</td>
<td>Free Convection, Sea Level.</td>
</tr>
</tbody>
</table>
3 Schematic

Figure 3 – Schematic.
4 Circuit Description

This circuit is configured as a flyback topology power supply utilizing the TNY288PG. Secondary-side constant voltage (CV) regulation is accomplished through optocoupler feedback with a Zener reference.

4.1 Input Rectifier and Filter

The AC input voltage is rectified by input bridge BR1. The rectified DC is then filtered by the bulk storage capacitors C1 and C2. Inductor L1, C1 and C2 form an input pi filter, which attenuates differential mode conducted EMI.

4.2 TNY288PG Operation

The TNY288PG device U1 integrates the power switching device, oscillator, control, startup, and protection functions.

The rectified and filtered input voltage is applied to the primary winding of T1. One side of the power transformer (T1) primary winding is connected to the positive leg of C2, and the other side is connected to the DRAIN (D) pin of U1. At the start of a switching cycle, the controller turns the power MOSFET on and current ramps up in the primary winding, delivering energy from bulk capacitor to transformer. When that current reaches the limit threshold, the controller turns the power MOSFET off. Due to the phasing of the transformer windings and the orientation of the output diode, the stored energy is delivered to the output capacitor during off time.

When the power MOSFET turns off, the leakage inductance of the transformer induces a voltage spike on the drain node. The amplitude of that spike is limited by an RCD clamp network that consists of D1, C3, R2 and R1. Resistor R2 and R1 not only damp the high frequency leakage ring that occurs when the power MOSFET turns off, but also limit the reverse current through D1 when the power MOSFET turns on. This allows a slow, low-cost, glass passivated diode (with a recovery time of $\leq 2 \mu s$.) to be used for D1. The slow diode also improves conducted EMI and efficiency.

Using ON/OFF control, U1 skips switching cycles to regulate the output voltage, based on feedback to its ENABLE/UNDERVOLTAGE (EN/UV) pin. The EN/UV pin current is sampled, just prior to each switching cycle, to determine if that switching cycle should be enabled or disabled. If the EN/UV pin current is $<115 \mu A$, the next switching cycle begins, and is terminated when the current through the power MOSFET reaches the internal current limit threshold. To evenly spread switching cycles, preventing group pulsing, the EN/UV pin threshold current is modulated between 115 μA and 60 μA based on the state during the previous cycle. An internal state machine sets the current limit to one of 4 levels appropriate for the operating conditions, ensuring that the switching frequency remains above the audible range until the transformer flux density is low enough to prevent audible noise. This practically eliminates audible noise when standard dip varnishing of the transformer is used.
4.3 **Output Rectification and Filtering**

Output rectification is provided by D3. Low ESR capacitor C7 achieves minimum output voltage ripple and noise in a small can size for the rated ripple current specification. A post filter (ferrite bead L2 and C8) attenuates noise and ripple further to meet the specification.

4.4 **Feedback and Output Voltage Regulation**

The supply’s output voltage regulation set point is set by the voltage that develops across Zener diode VR2, R7 and the LED in optocoupler U2. The value of R8 was calculated to bias VR2 to about 0.5 mA when it goes into reverse avalanche conduction. This ensures that it is operating close to its rated knee current. Resistor R7 limits the maximum current during load transients. The values of R7 and R8 can both be varied slightly to fine-tune the output regulation set point. When the output voltage rises above the set point, the LED in U2 becomes forward biased. On the primary-side, the phototransistor of U2 turns on and draws current out of the EN/UV pin of U1. Just before the start of each switching cycle, the controller checks the EN/UV pin current. If the current flowing out of the EN/UV pin is greater than 115 μA, that switching cycle will be disabled. As switching cycles are enabled and disabled, the output voltage is kept very close to the regulation set point. For greater output voltage regulation accuracy, a reference IC such as a TL431 can be used in place of VR2.

4.5 **Output Overvoltage Shutdown**

PI’s proprietary primary overvoltage detection eliminates the use additional opto-coupler and enables to low voltage rated output. It is accomplished by sensing the switching bias winding voltage during power MOSFET off time. When the power MOSFET is off, the reflected voltage on the bias winding is proportional to the output voltage by a factor determined by the bias and output turns ratio. When this voltage exceeds the sum of VR1, forward voltage of D4, and the BYPASS (BP) pin voltage, an overvoltage condition occurs and current begins to flow into the BYPASS pin. When this current exceeds 5 mA the internal shutdown circuit in U1 is activated. Reset is accomplished by removing input power and allowing the BYPASS pin voltage to drop below 2 V. Resistor R3 can be used to fine tune the overvoltage limit.

4.6 **Undervoltage Lockout**

Undervoltage (UV) lockout detection is accomplished by sensing the rectified dc voltage thru resistors R11, R12 and R13. When installed, power MOSFET switching is disabled at start-up until the current into the EN/UV pin exceeds 25 μA. This allows the designer to set the input voltage at which MOSFET switching will be enabled by choosing the sum of R11 – R13. For example, a value of 3.6 MΩ requires an input voltage of 65 VAC (92 VDC across C2) before the current into the EN/UV pin exceeds 25 μA. The UV detect function also prevents the output of the power supply from glitching (trying to restart) after output regulation is lost (during shutdown), by disabling power MOSFET switching until the input voltage rises above the undervoltage lockout threshold.
4.7 **EMI Design Aspects**

In addition to the simple input \(\pi \) filter (C1, L1 and C2) for differential mode EMI, this design makes use of shielding techniques in the transformer to reduce common mode EMI displacement currents. Resistor R2 and capacitor C3 are added to act as damping network to reduce high frequency transformer ringing. These techniques combined with the frequency jitter of TNY288PG gives excellent conducted and radiated EMI performance.

4.8 **ESD Design Aspects**

Component placement and board layout play a crucial role in order to pass ESD compliance requirements. The following design considerations were applied in this reference board:

- Place C6 as close as possible and directly to BP and SOURCE pins.
- Separate the ground trace of U2 from the ground trace of C5. The two ground traces can be merged at the bulk capacitor C2 ground pin. This minimizes coupling of ESD.
- Route Y capacitor C9 traces directly to bulk capacitor C2 positive pin, and the other end to directly to RTN terminal
- Route the spark gap between RTN terminal and Neutral terminal
5 PCB Layout

Figure 4 – Populated Circuit Board, Top View.

Figure 5 – Populated Circuit Board, Bottom View.
Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Ref Des</th>
<th>Description</th>
<th>Mfg Part Number</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>BR1</td>
<td>1000 V, 0.8 A, Bridge Rectifier, SMD, MBS-1, 4-30IC</td>
<td>B10S-G</td>
<td>Comchip</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>C1</td>
<td>10 μF, ±20%, 400 V, Electrolytic, (10 x 14.5)</td>
<td>UVC2G100MPD</td>
<td>Nichicon</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>C2</td>
<td>15 μF, 400 V, Electrolytic, (10 x 16)</td>
<td>UVC2G150MPD</td>
<td>Nichicon</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>C3</td>
<td>1 nF, 1000 V, Ceramic, X7R, 1206</td>
<td>C12206KKX7RBB102</td>
<td>Yageo</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>C5</td>
<td>10 μF, 25 V, Electrolytic, Gen. Purpose, (5 x 12)</td>
<td>ECA-1EM100</td>
<td>Panasonic</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>C6</td>
<td>100 nF, 25 V, Ceramic, X7R, 0805</td>
<td>08053104KAT2A</td>
<td>AVX</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>C7</td>
<td>1000 μF, 16 V, Electrolytic, Very Low ESR, 23 mΩ, (10 x 20)</td>
<td>EKZE160ELL102MJ20S</td>
<td>Nippon Chemi-Con</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>C8</td>
<td>100 μF, 16 V, Electrolytic, Low ESR, 250 mΩ, (6.3 x 11.5)</td>
<td>ELXZ160ELL101MF5BD</td>
<td>Nippon Chemi-Con</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>C9</td>
<td>1 nF, Ceramic, Y1</td>
<td>440LD10-R</td>
<td>Vishay</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>C10</td>
<td>560 μF, ±5%, 100 V, General Purpose, Ceramic Capacitor, C0G, NP0, 0805</td>
<td>CC0805JNP00BN561</td>
<td>Yageo</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>D1</td>
<td>1000 V, 1 A, Rectifier, DO-41</td>
<td>IN4007-E43/54</td>
<td>Vishay</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>D2 D4</td>
<td>100 V, 0.2 A, Fast Switching, 50 ns, SOD-323</td>
<td>BAV19WS-7-F</td>
<td>Diodes, Inc.</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>D3</td>
<td>150 V, 3 A, Schottky, DO-211AD</td>
<td>STPS3150RL</td>
<td>ST</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>F1</td>
<td>1 A, 250 V, Slow, Long Time Lag, RST 1</td>
<td>RST 1</td>
<td>Belfuse</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>L1</td>
<td>1000 μH, 0.3 A</td>
<td>RLB0914-102KL</td>
<td>Bourns</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>L2</td>
<td>3.5 mm x 4.45 mm, 56 Ω at 100 MHz, #22 AWG hole, Ferrite Bead</td>
<td>2761001112</td>
<td>Fair-Rite</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>R1</td>
<td>RES, 51 Ω, 5%, 1/4 W, Thick Film, 1206</td>
<td>ERJ-8GEY3510V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>R2</td>
<td>RES, 510 kΩ, 5%, 1/4 W, Thick Film, 1206</td>
<td>ERJ-8GEY3514V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>R3</td>
<td>RES, 10 Ω, 5%, 1/8 W, Thick Film, 0805</td>
<td>ERJ-6GEY3100V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>R6</td>
<td>RES, 8.2 kΩ, 5%, 1/8 W, Thick Film, 0805</td>
<td>ERJ-6GEY3822V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>R7</td>
<td>RES, 392 Ω, 1%, 1/8 W, Thick Film, 0805</td>
<td>ERJ-6ENF3902V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>R8</td>
<td>RES, 2.0 kΩ, 1%, 1/8 W, Thick Film, 0805</td>
<td>ERJ-6ENF2001V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>R9</td>
<td>RES, 100 Ω, 5%, 1/4 W, Thick Film, 1206</td>
<td>ERJ-8GEY3101V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>R10</td>
<td>RES, 0 Ω, 5%, 1/4 W, Carbon Film</td>
<td>ZOR-25-B-52-0R</td>
<td>Yageo</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>R11 R12 R13</td>
<td>RES, 1.2 MΩ, 5%, 1/8 W, Thick Film, 0805</td>
<td>ERJ-6GEY3125V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>RV1</td>
<td>300 VAC, 25 J, 7 mm, RADIAL</td>
<td>V300LA4P</td>
<td>Littlefuse</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>T1</td>
<td>Bobbin, EE16 Vertical, 10 pins</td>
<td>YWA-527-00B</td>
<td>Yih-Hwa</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>U1</td>
<td>TinySwitch-4, TNY288PG, DIP-8C</td>
<td>TNY288PG</td>
<td>Power Integrations</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>U2</td>
<td>Optocoupler, 80 V, CTR 80-160%, 4-DIP</td>
<td>PS2501-1-H-A</td>
<td>CEL</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>VR1</td>
<td>DIODE ZENER 6.8 V 500 mW SOD123</td>
<td>MMZS2525B-7-F</td>
<td>Diodes, Inc.</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>VR2</td>
<td>11 V, 500 mW, 2%, DO-35</td>
<td>BZX79-111,133</td>
<td>NXP Semi</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>+12V</td>
<td>Test Point, RED, THRU-HOLE MOUNT</td>
<td>5010</td>
<td>Keystone</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>N RTN</td>
<td>Test Point, BLK, THRU-HOLE MOUNT</td>
<td>5011</td>
<td>Keystone</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>L</td>
<td>Test Point, WHT, THRU-HOLE MOUNT</td>
<td>5012</td>
<td>Keystone</td>
</tr>
</tbody>
</table>
7 Transformer Specification

7.1 Electrical Diagram

![Transformer Electrical Diagram](image)

Figure 6 – Transformer Electrical Diagram.

7.2 Electrical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Primary Inductance</td>
<td>Measured at V_{PK-PK}, 100 kHz switching frequency, between pin 1 and pin 3 with all other windings open.</td>
<td>860 μH</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Tolerance of Primary Inductance.</td>
<td>±10%</td>
</tr>
<tr>
<td>Leakage Inductance</td>
<td>Measured across primary winding with all other windings shorted.</td>
<td><20 μH</td>
</tr>
</tbody>
</table>

7.3 Material List

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Core: EE16 PC44.</td>
</tr>
<tr>
<td>[7]</td>
<td>Polyester Tape: 5 mm.</td>
</tr>
</tbody>
</table>
7.4 **Transformer Build Diagram**

![Transformer Build Diagram](image)

Figure 7 – Transformer Build Diagram.

7.5 **Transformer Instructions**

<table>
<thead>
<tr>
<th>Winding Preparation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 1st Primary</td>
<td>Start at pin 3. Wind 60 turns of wire Item [3] in two layers. After the last turn, bring the wire back across the windings into pin 2.</td>
</tr>
<tr>
<td>Insulation</td>
<td>Place one layer of tape Item [6] for insulation.</td>
</tr>
<tr>
<td>Insulation</td>
<td>Place one layer of tape Item [6] for insulation.</td>
</tr>
<tr>
<td>Insulation</td>
<td>Place one layer of tape Item [6] for insulation.</td>
</tr>
<tr>
<td>W4 Shield</td>
<td>Start at pin 1. Wind 6 turns of three strands of wire Item [4] in one layer. Spread the turns evenly across the bobbin. The end of the last turn is no-connect (NC).</td>
</tr>
<tr>
<td>Insulation</td>
<td>Place one layer of tape Item [6] for insulation.</td>
</tr>
<tr>
<td>W5 2nd Primary</td>
<td>Start at pin 2. Wind 30 turns of wire Item [3] in one layer. After the last turn, bring the wire back across the windings into pin 1.</td>
</tr>
<tr>
<td>Insulation</td>
<td>Place one layer of tape Item [6] for insulation.</td>
</tr>
<tr>
<td>Assembly</td>
<td>Grind core halves for specified primary inductance. Place a floating wire along the core, and solder one end to pin 1. Wrap core halves and floating wire with tape Item [7]. Remove pin 2. Varnish with Item [8].</td>
</tr>
</tbody>
</table>
7.6 Transformer Winding Illustrations

<table>
<thead>
<tr>
<th>Winding Preparation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 1(^{st}) Primary</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td></td>
</tr>
<tr>
<td>W2 Bias</td>
<td></td>
</tr>
</tbody>
</table>

Place the bobbin Item [2] with the pins facing the winder. Winding direction is counter-clockwise as shown.

Start at pin 3. Wind 60 turns of wire Item [3] in two layers. End at pin 2.

Place one layer of tape Item [6] for insulation.

Start at pin 4. Wind 11 turns of two strands of wire Item [3] in one layer. Wind all turns on tightly on one side. Bring the back into pin 5.
Insulation	Place one layer of tape Item [6] for insulation.
Secondary	Place one layer of tape Item [6] for insulation.
W4	Start at pin 1. Wind 6 turns of three strands of wire Item [4] in one layer. Spread the turns evenly across the bobbin. The end of the last turn is no connect (NC).

Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.power.com
<table>
<thead>
<tr>
<th>Insulation</th>
<th>Place one layer of tape Item [6] for insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>W5 2(^{nd}) Primary</td>
<td>Start at pin 2. Wind 30 turns of wire Item [3] in one layer. After the last turn, bring the wire back across the windings into pin 1.</td>
</tr>
<tr>
<td>Insulation</td>
<td>Place two layers of tape Item [6] for insulation</td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Grind core halves for specified primary inductance.</td>
<td></td>
</tr>
<tr>
<td>Place a floating wire along the core, and solder one end to pin 1.</td>
<td></td>
</tr>
<tr>
<td>Wrap core halves and floating wire with tape Item [7].</td>
<td></td>
</tr>
<tr>
<td>Remove pin 2. Varnish with Item [8].</td>
<td></td>
</tr>
</tbody>
</table>
Transformer Design Spreadsheet

Enter Application Variables

<table>
<thead>
<tr>
<th></th>
<th>INPUT</th>
<th>INFO</th>
<th>OUTPUT</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACMIN</td>
<td>85</td>
<td></td>
<td>85</td>
<td>Volts</td>
</tr>
<tr>
<td>VACMAX</td>
<td>265</td>
<td>265</td>
<td></td>
<td>Maximum AC Input Voltage</td>
</tr>
<tr>
<td>fL</td>
<td>50</td>
<td>50</td>
<td></td>
<td>AC Mains Frequency</td>
</tr>
<tr>
<td>VO</td>
<td>12.00</td>
<td></td>
<td>12.00</td>
<td>Volts (at continuous power)</td>
</tr>
<tr>
<td>IO</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>Power Supply Output Current</td>
</tr>
<tr>
<td>Power</td>
<td>12.00</td>
<td></td>
<td></td>
<td>Continuous Output Power</td>
</tr>
</tbody>
</table>

TinySwitch-4 Variables

<table>
<thead>
<tr>
<th></th>
<th>TNY288D</th>
<th>TNY288D</th>
<th>User-defined TinySwitch-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chose Configuration</td>
<td>STD</td>
<td>Standard Current Limit</td>
<td>Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications)</td>
</tr>
<tr>
<td>ILIMITMIN</td>
<td>0.512</td>
<td>Amps</td>
<td>Minimum Current Limit</td>
</tr>
<tr>
<td>ILIMITTYP</td>
<td>0.55</td>
<td>Amps</td>
<td>Typical Current Limit</td>
</tr>
<tr>
<td>ILIMITMAX</td>
<td>0.588</td>
<td>Amps</td>
<td>Maximum Current Limit</td>
</tr>
<tr>
<td>fSmin</td>
<td>124000</td>
<td>Hertz</td>
<td>Minimum Device Switching Frequency</td>
</tr>
<tr>
<td>I^2fmin</td>
<td>35.937</td>
<td>A^2kHz</td>
<td>I^2f (product of current limit squared and frequency is trimmed for tighter tolerance)</td>
</tr>
<tr>
<td>VOR</td>
<td>95.6</td>
<td>Volts</td>
<td>Reflected Output Voltage (VOR < 135 V Recommended)</td>
</tr>
<tr>
<td>VDS</td>
<td>10.0</td>
<td>Volts</td>
<td>TinySwitch-4 on-state Drain to Source Voltage</td>
</tr>
<tr>
<td>VO</td>
<td>0.70</td>
<td>Volts</td>
<td>Output Winding Diode Forward Voltage Drop</td>
</tr>
<tr>
<td>KP</td>
<td>0.75</td>
<td></td>
<td>Ripple to Peak Current Ratio (KP < 6)</td>
</tr>
<tr>
<td>KP_TRANSIENT</td>
<td>0.44</td>
<td></td>
<td>Transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25</td>
</tr>
</tbody>
</table>

Enter Bias Winding Variables

<table>
<thead>
<tr>
<th></th>
<th>11.65</th>
<th>11.65</th>
<th>Volts</th>
<th>Bias Winding Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDB</td>
<td>0.70</td>
<td>Volts</td>
<td>Bias Winding Diode Forward Voltage Drop</td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>11</td>
<td></td>
<td>Bias Winding Number of Turns</td>
<td></td>
</tr>
<tr>
<td>VZOV</td>
<td>17.65</td>
<td>Volts</td>
<td>Over Voltage Protection zener diode voltage.</td>
<td></td>
</tr>
</tbody>
</table>

UVLO Variables

<table>
<thead>
<tr>
<th></th>
<th>88.34</th>
<th>Volts</th>
<th>Target DC under-voltage threshold, above which the power supply with start</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_UV_ACTUAL</td>
<td>84.70</td>
<td>Volts</td>
<td>Typical DC start-up voltage based on standard value of RUV_ACTUAL</td>
</tr>
<tr>
<td>RUV_IDEAL</td>
<td>3.45</td>
<td>Mohms</td>
<td>Calculated value for UV Lockout resistor</td>
</tr>
<tr>
<td>RUV_ACTUAL</td>
<td>3.30</td>
<td>Mohms</td>
<td>Closest standard value of resistor to RUV_IDEAL</td>
</tr>
</tbody>
</table>

Enter Transformer Core/Construction Variables

<table>
<thead>
<tr>
<th></th>
<th>EE16</th>
<th>EE16</th>
<th>P/N:</th>
<th>PC40EE16-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>EE16</td>
<td></td>
<td>P/N:</td>
<td>EE16_BOBBIN</td>
</tr>
<tr>
<td>Custom core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>0.19</td>
<td>cm^2</td>
<td>Core Effective Cross Sectional Area</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td>3.50</td>
<td>cm</td>
<td>Core Effective Path Length</td>
<td></td>
</tr>
<tr>
<td>AL</td>
<td>1140</td>
<td>nH/T^2</td>
<td>Ungapped Core Effective Inductance</td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>8.6</td>
<td>mm</td>
<td>Bobbin Physical Winding Width</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>0.00</td>
<td>mm</td>
<td>Safety Margin Width (Half the Primary to</td>
<td></td>
</tr>
</tbody>
</table>
Secondary Creepage Distance

- **L**: 3
- **NS**: 12

DC INPUT VOLTAGE PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMIN</td>
<td>80.3 Volts</td>
</tr>
<tr>
<td>VMAX</td>
<td>374.8 Volts</td>
</tr>
</tbody>
</table>

CURRENT WAVEFORM SHAPE PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAX</td>
<td>0.58 Duty Ratio at full load, minimum primary inductance and minimum input voltage</td>
</tr>
<tr>
<td>IAVG</td>
<td>0.20 Amps Average Primary Current</td>
</tr>
<tr>
<td>IP</td>
<td>0.51 Amps Minimum Peak Primary Current</td>
</tr>
<tr>
<td>IR</td>
<td>0.39 Amps Primary Ripple Current</td>
</tr>
<tr>
<td>IRMS</td>
<td>0.29 Amps Primary RMS Current</td>
</tr>
</tbody>
</table>

TRANSFORMER PRIMARY DESIGN PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>861 uH Typical Primary Inductance. +/- 10% to ensure a minimum primary inductance of 774 uH</td>
</tr>
<tr>
<td>LP_TOLERANCE</td>
<td>10 % Primary inductance tolerance</td>
</tr>
<tr>
<td>NP</td>
<td>90 Primary Winding Number of Turns</td>
</tr>
<tr>
<td>ALG</td>
<td>105 nH/T^2 Gapped Core Effective Inductance</td>
</tr>
<tr>
<td>BM</td>
<td>2918 Gauss Maximum Operating Flux Density, BM < 3100 is recommended</td>
</tr>
<tr>
<td>BAC</td>
<td>1099 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)</td>
</tr>
<tr>
<td>ur</td>
<td>1654 Relative Permeability of Ungapped Core</td>
</tr>
<tr>
<td>LG</td>
<td>0.21 mm Gap Length (Lg > 0.1 mm)</td>
</tr>
<tr>
<td>BWE</td>
<td>25.8 mm Effective Bobbin Width</td>
</tr>
<tr>
<td>OD</td>
<td>0.286 mm Maximum Primary Wire Diameter including insulation</td>
</tr>
<tr>
<td>INS</td>
<td>0.05 mm Estimated Total Insulation Thickness (= 2 * film thickness)</td>
</tr>
<tr>
<td>DIA</td>
<td>0.23 mm Bare conductor diameter</td>
</tr>
<tr>
<td>AWG</td>
<td>31 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value)</td>
</tr>
<tr>
<td>CM</td>
<td>81 Cmils Bare conductor effective area in circular mils</td>
</tr>
<tr>
<td>CMA</td>
<td>274 Cmils/Amp Primary Winding Current Capacity (200 < CMA < 500)</td>
</tr>
</tbody>
</table>

TRANSFORMER SECONDARY DESIGN PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP</td>
<td>3.85 Amps Peak Secondary Current</td>
</tr>
<tr>
<td>ISRMS</td>
<td>1.90 Amps Secondary RMS Current</td>
</tr>
<tr>
<td>IRIPPLE</td>
<td>1.62 Amps Output Capacitor RMS Ripple Current</td>
</tr>
<tr>
<td>CMS</td>
<td>381 Cmils Secondary Bare Conductor minimum circular mils</td>
</tr>
<tr>
<td>AWGS</td>
<td>24 AWG Secondary Wire Gauge (Rounded up to next larger standard AWG value)</td>
</tr>
</tbody>
</table>

VOLTAGE STRESS PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDRAIN</td>
<td>596 Volts Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance)</td>
</tr>
<tr>
<td>PIVS</td>
<td>62 Volts Output Rectifier Maximum Peak Inverse Voltage</td>
</tr>
</tbody>
</table>

TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO1</td>
<td>12.00 Volts Main Output Voltage (if unused, defaults to single output design)</td>
</tr>
<tr>
<td>IO1</td>
<td>1.00 Amps Output DC Current</td>
</tr>
<tr>
<td>PO1</td>
<td>12 Watts Output Power</td>
</tr>
<tr>
<td>VO1</td>
<td>0.70 Volts Output Diode Forward Voltage Drop</td>
</tr>
<tr>
<td>NS1</td>
<td>12.00 Output Winding Number of Turns</td>
</tr>
<tr>
<td>ISRMS1</td>
<td>1.903 Amps Output Winding RMS Current</td>
</tr>
<tr>
<td>IRIPPLE1</td>
<td>1.62 Amps Output Capacitor RMS Ripple Current</td>
</tr>
<tr>
<td>PIVS1</td>
<td>62 Volts Output Rectifier Maximum Peak Inverse Voltage</td>
</tr>
</tbody>
</table>

Recommended Diodes

- **1N5820, SB320** Recommended Diodes for this output
<table>
<thead>
<tr>
<th>CMS1</th>
<th>381</th>
<th>Cmils</th>
<th>Output Winding Bare Conductor minimum circular mils</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG1</td>
<td>24</td>
<td>AWG</td>
<td>Wire Gauge (Rounded up to next larger standard AWG value)</td>
</tr>
<tr>
<td>DIAS1</td>
<td>0.51</td>
<td>mm</td>
<td>Minimum Bare Conductor Diameter</td>
</tr>
<tr>
<td>ODS1</td>
<td>0.72</td>
<td>mm</td>
<td>Maximum Outside Diameter for Triple Insulated Wire</td>
</tr>
</tbody>
</table>
10 Performance Data

10.1 Efficiency

10.1.1 Active Mode Measurement Data

<table>
<thead>
<tr>
<th>Load (%)</th>
<th>Measured Performance</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{IN} (VAC)</td>
<td>DOE6</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>2014 Tier 1</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>77.88</td>
<td>70</td>
</tr>
<tr>
<td>25</td>
<td>83.68</td>
<td>82.67</td>
</tr>
<tr>
<td>50</td>
<td>84.87</td>
<td>84.46</td>
</tr>
<tr>
<td>75</td>
<td>85.14</td>
<td>84.77</td>
</tr>
<tr>
<td>100</td>
<td>84.61</td>
<td>85.02</td>
</tr>
<tr>
<td>Ave</td>
<td>84.57</td>
<td>84.23</td>
</tr>
<tr>
<td>36</td>
<td>(27)</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>(28)</td>
<td></td>
</tr>
</tbody>
</table>

† Numbers in parenthesis represent no-load input power without UV sensing.
10.1.2 Full Load Efficiency vs. Line
Test Condition: Soak for 15 minutes for each line.

Figure 8 – Full Load Efficiency vs. Line.
10.1.3 Efficiency vs. Load

Test Condition: Soak for 15 minutes each line, and 5 minutes for each load.

Figure 9 — Efficiency vs. Percentage Load.
Available Standby Output Power

Figure 10 – Available Standby Output Power for 1 W, 2 W and 3 W Input Power.
Figure 11 – Available Standby Output Power for 0.3 W and 0.5 W Input Power.
10.3 **No-Load Input Power**

Test Condition: Soak for 15 minutes each line and 1 minute integration time.

![Graph](image)

Figure 12 — No-Load Input Power vs. Line at Room Temperature.
10.4 *Line Regulation*

Test Condition: Soak for 15 minutes for each line.

Figure 13 – Output Voltage vs. Line Voltage.
10.5 **Load Regulation**

Test Condition: Soak for 15 minutes each line, and 5 minutes for each load.

![Load Regulation Graph](image)

Figure 14 – Output Voltage vs. Percent Load.
11 Waveforms

11.1 Load Transient Response
Test Condition: Dynamic load frequency = 1 kHz, Duty cycle = 50%

11.1.1 0% - 100% Load Change

Figure 15 – 85 VAC 60 Hz.
CH3: I_{OUT}, 500 mA / div., 50 ms / div.
CH4: V_{OUT}, 400 mV / div., 50 ms / div.
Zoom = 500 μs / div.
V_{MAX}: 12.623 V, V_{MIN}: 12.417 V.

Figure 16 – 115 VAC 60 Hz.
CH3: I_{OUT}, 500 mA / div., 50 ms / div.
CH4: V_{OUT}, 400 mV / div., 50 ms / div.
Zoom = 500 μs / div.
V_{MAX}: 12.638 V, V_{MIN}: 12.433 V.

Figure 17 – 230 VAC 50 Hz.
CH3: I_{OUT}, 500 mA / div., 50 ms / div.
CH4: V_{OUT}, 400 mV / div., 50 ms / div.
Zoom = 500 μs / div.
V_{MAX}: 12.67 V, V_{MIN}: 12.48 V.

Figure 18 – 265 VAC 50 Hz.
CH3: I_{OUT}, 500 mA / div., 50 ms / div.
CH4: V_{OUT}, 400 mV / div., 50 ms / div.
Zoom = 500 μs / div.
V_{MAX}: 12.686 V, V_{MIN}: 12.496 V.
11.1.2 50% - 100% Load Change

Figure 19 – 85 VAC 60 Hz.
CH3: I_{OUT}, 500 mA / div., 50 ms / div.
CH4: V_{OUT}, 400 mV / div., 50 ms / div.
Zoom = 500 μs / div.
V_{MAX}: 12.607 V, V_{MIN}: 12.449 V.

Figure 20 – 115 VAC 60 Hz.
CH3: I_{OUT}, 500 mA / div., 50 ms / div.
CH4: V_{OUT}, 400 mV / div., 50 ms / div.
Zoom = 500 μs / div.
V_{MAX}: 12.623 V, V_{MIN}: 12.464 V.

Figure 21 – 230 VAC 50 Hz.
CH3: I_{OUT}, 500 mA / div., 50 ms / div.
CH4: V_{OUT}, 400 mV / div., 50 ms / div.
Zoom = 500 μs / div.
V_{MAX}: 12.654 V, V_{MIN}: 12.512 V.

Figure 22 – 265 VAC 50 Hz.
CH3: I_{OUT}, 500 mA / div., 50 ms / div.
CH4: V_{OUT}, 400 mV / div., 50 ms / div.
Zoom = 500 μs / div.
V_{MAX}: 12.67 V, V_{MIN}: 12.528 V.
11.2 **Output Voltage at Start-up**

11.2.1 CC Mode

11.2.1.1 100% Load

![Figure 23](image)

Figure 23 – 85 VAC 60 Hz.

- CH1: V_{IN}, 400 V / div., 10 ms / div.
- CH2: V_{OUT}, 5 V / div., 10 ms / div.
- CH3: I_{OUT}, 500 mA / div., 10 ms / div.
- Rise Time = 12.608 ms.

![Figure 24](image)

Figure 24 – 115 VAC 60 Hz.

- CH1: V_{IN}, 400 V / div., 10 ms / div.
- CH2: V_{OUT}, 5 V / div., 10 ms / div.
- CH3: I_{OUT}, 500 mA / div., 10 ms / div.
- Rise Time = 11.788 ms.

![Figure 25](image)

Figure 25 – 230 VAC 50 Hz.

- CH1: V_{IN}, 400 V / div., 10 ms / div.
- CH2: V_{OUT}, 5 V / div., 10 ms / div.
- CH3: I_{OUT}, 500 mA / div., 10 ms / div.
- Rise Time = 11.715 ms.

![Figure 26](image)

Figure 26 – 265 VAC 50 Hz.

- CH1: V_{IN}, 400 V / div., 10 ms / div.
- CH2: V_{OUT}, 5 V / div., 10 ms / div.
- CH3: I_{OUT}, 500 mA / div., 10 ms / div.
- Rise Time = 11.225 ms.
11.2.1.2 0% Load

Figure 27 – 85 VAC 60 Hz.
CH1: V_{IN}, 400 V / div., 10 ms / div.
CH2: V_{OUT}, 5 V / div., 10 ms / div.
CH3: I_{OUT}, 500 mA / div., 10 ms / div.
Rise Time = 5.6977 ms.

Figure 28 – 115 VAC 60 Hz.
CH1: V_{IN}, 400 V / div., 10 ms / div.
CH2: V_{OUT}, 5 V / div., 10 ms / div.
CH3: I_{OUT}, 500 mA / div., 10 ms / div.
Rise Time = 5.3668 ms.

Figure 29 – 230 VAC 50 Hz.
CH1: V_{IN}, 400 V / div., 10 ms / div.
CH2: V_{OUT}, 5 V / div., 10 ms / div.
CH3: I_{OUT}, 500 mA / div., 10 ms / div.
Rise Time = 5.2846 ms.

Figure 30 – 265 VAC 50 Hz.
CH1: V_{IN}, 400 V / div., 10 ms / div.
CH2: V_{OUT}, 5 V / div., 10 ms / div.
CH3: I_{OUT}, 500 mA / div., 10 ms / div.
Rise Time = 5.207 ms.
11.2.2 CR Mode

11.2.2.1 100% Load

Figure 31 – 85 VAC 60 Hz.
CH1: V_{IN}, 400 V / div., 10 ms / div.
CH2: V_{OUT}, 5 V / div., 10 ms / div.
CH3: I_{OUT}, 500 mA / div., 10 ms / div.
Rise Time = 9.0023 ms.

Figure 32 – 115 VAC 60 Hz.
CH1: V_{IN}, 400 V / div., 10 ms / div.
CH2: V_{OUT}, 5 V / div., 10 ms / div.
CH3: I_{OUT}, 500 mA / div., 10 ms / div.
Rise Time = 8.4066 ms.

Figure 33 – 230 VAC 50 Hz.
CH1: V_{IN}, 400 V / div., 10 ms / div.
CH2: V_{OUT}, 5 V / div., 10 ms / div.
CH3: I_{OUT}, 500 mA / div., 10 ms / div.
Rise Time = 8.2016 ms.

Figure 34 – 265 VAC 50 Hz.
CH1: V_{IN}, 400 V / div., 10 ms / div.
CH2: V_{OUT}, 5 V / div., 10 ms / div.
CH3: I_{OUT}, 500 mA / div., 10 ms / div.
Rise Time = 7.9933 ms.
11.2.2.2 0% Load

Figure 35 – 85 VAC 60 Hz.
- CH1: \(V_{IN} \), 400 V / div., 10 ms / div.
- CH2: \(V_{OUT} \), 5 V / div., 10 ms / div.
- CH3: \(I_{OUT} \), 500 mA / div., 10 ms / div.
- Rise Time = 5.6831 ms.

Figure 36 – 115 VAC 60 Hz.
- CH1: \(V_{IN} \), 400 V / div., 10 ms / div.
- CH2: \(V_{OUT} \), 5 V / div., 10 ms / div.
- CH3: \(I_{OUT} \), 500 mA / div., 10 ms / div.
- Rise Time = 5.3454 ms.

Figure 37 – 230 VAC 50 Hz.
- CH1: \(V_{IN} \), 400 V / div., 10 ms / div.
- CH2: \(V_{OUT} \), 5 V / div., 10 ms / div.
- CH3: \(I_{OUT} \), 500 mA / div., 10 ms / div.
- Rise Time = 5.2846 ms.

Figure 38 – 265 VAC 50 Hz.
- CH1: \(V_{IN} \), 400 V / div., 10 ms / div.
- CH2: \(V_{OUT} \), 5 V / div., 10 ms / div.
- CH3: \(I_{OUT} \), 500 mA / div., 10 ms / div.
- Rise Time = 5.1899 ms.
11.3 **Switching Waveforms**

11.3.1 Primary MOSFET Drain-Source Voltage and Current at Normal Operation

11.3.1.1 100% Load

Figure 39 – 85 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
Zoom: 10 μs / div.
$V_{DS(\text{MAX})} = 290.12$ V, $I_{DS(\text{MAX})} = 586.56$ mA.

Figure 40 – 115 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
Zoom: 10 μs / div.
$V_{DS(\text{MAX})} = 329.64$ V, $I_{DS(\text{MAX})} = 594.47$ mA.

Figure 41 – 230 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
Zoom: 10 μs / div.
$V_{DS(\text{MAX})} = 487.75$ V, $I_{DS(\text{MAX})} = 547.04$ mA.

Figure 42 – 265 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
Zoom: 10 μs / div.
$V_{DS(\text{MAX})} = 543.08$ V, $I_{DS(\text{MAX})} = 539.13$ mA.
11.3.1.2 0% Load

Figure 43 – 85 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
Zoom: 10 μs / div.
$V_{DS(\text{MAX})} = 250.59$ V, $I_{DS(\text{MAX})} = 230.83$ mA.

Figure 44 – 115 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
Zoom: 10 μs / div.
$V_{DS(\text{MAX})} = 298.02$ V, $I_{DS(\text{MAX})} = 238.74$ mA.

Figure 45 – 230 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
Zoom: 10 μs / div.
$V_{DS(\text{MAX})} = 464.03$ V, $I_{DS(\text{MAX})} = 301.98$ mA.

Figure 46 – 265 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
Zoom: 10 μs / div.
$V_{DS(\text{MAX})} = 511.46$ V, $I_{DS(\text{MAX})} = 333.6$ mA.
11.3.2 Primary MOSFET Drain-Source Voltage and Current at Start-up Operation

11.3.2.1 100% Load

![Graph 47](image-url) 85 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
$V_{DS(\text{MAX})} = 290.12 \text{ V}$, $I_{DS(\text{MAX})} = 657.71 \text{ mA}$.

![Graph 48](image-url) 115 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
$V_{DS(\text{MAX})} = 329.64 \text{ V}$, $I_{DS(\text{MAX})} = 673.52 \text{ mA}$.

![Graph 49](image-url) 230 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
$V_{DS(\text{MAX})} = 495.65 \text{ V}$, $I_{DS(\text{MAX})} = 744.66 \text{ mA}$.

![Graph 50](image-url) 265 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
$V_{DS(\text{MAX})} = 543.08 \text{ V}$, $I_{DS(\text{MAX})} = 744.66 \text{ mA}$.
11.3.2.2 0% Load

Figure 51 – 85 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
$V_{DS(\text{MAX})} = 274.31$ V, $I_{DS(\text{MAX})} = 720.95$ mA.

Figure 52 – 115 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
$V_{DS(\text{MAX})} = 305.93$ V, $I_{DS(\text{MAX})} = 728.85$ mA.

Figure 53 – 230 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
$V_{DS(\text{MAX})} = 487.75$ V, $I_{DS(\text{MAX})} = 728.85$ mA.

Figure 54 – 265 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 10 ms / div.
CH2: I_{DS}, 200 mA / div., 10 ms / div.
$V_{DS(\text{MAX})} = 519.37$ V, $I_{DS(\text{MAX})} = 728.85$ mA.
11.3.3 Output Diode Voltage and Current at Normal Operation

11.3.3.1 100% Load

Figure 55 – 85 VAC 60 Hz.
- CH1: \(V_D \) 20 V / div., 10 ms / div.
- CH2: \(I_D \) 2 A / div., 10 ms / div.
- Zoom: 10 \(\mu \) s / div.
- PIV = 51.304 V, \(I_{D(\text{MAX})} = 5.6285 \) A.

Figure 56 – 115 VAC 60 Hz.
- CH1: \(V_D \) 20 V / div., 10 ms / div.
- CH2: \(I_D \) 2 A / div., 10 ms / div.
- Zoom: 10 \(\mu \) s / div.
- PIV = 52.885 V, \(I_{D(\text{MAX})} = 5.5494 \) A.

Figure 57 – 230 VAC 50 Hz.
- CH1: \(V_D \) 20 V / div., 10 ms / div.
- CH2: \(I_D \) 2 A / div., 10 ms / div.
- Zoom: 10 \(\mu \) s / div.
- PIV = 62.372 V, \(I_{D(\text{MAX})} = 5.2332 \) A.

Figure 58 – 265 VAC 50 Hz.
- CH1: \(V_D \) 20 V / div., 10 ms / div.
- CH2: \(I_D \) 2 A / div., 10 ms / div.
- Zoom: 10 \(\mu \) s / div.
- PIV = 70.277 V, \(I_{D(\text{MAX})} = 5.2332 \) A.
11.3.3.2 0% Load

Figure 59 – 85 VAC 60 Hz.
- CH2: I_D, 2 A / div., 10 ms / div.
- Zoom: 10 μs / div.
- PIV = 31.542 V, $I_D(\text{MAX}) = 1.2016$ A.

Figure 60 – 115 VAC 60 Hz.
- CH2: I_D, 2 A / div., 10 ms / div.
- Zoom: 10 μs / div.
- PIV = 37.866 V, $I_D(\text{MAX}) = 1.2806$ A.

Figure 61 – 230 VAC 50 Hz.
- CH2: I_D, 2 A / div., 10 ms / div.
- Zoom: 10 μs / div.
- PIV = 62.372 V, $I_D(\text{MAX}) = 1.5178$ A.

Figure 62 – 265 VAC 50 Hz.
- CH2: I_D, 2 A / div., 10 ms / div.
- Zoom: 10 μs / div.
- PIV = 69.486 V, $I_D(\text{MAX}) = 1.5968$ A.
11.3.4 Output Diode Voltage and Current at Start-up Operation

11.3.4.1 100% Load

Figure 63 – 85 VAC 60 Hz.
CH1: V_D, 20 V / div., 10 ms / div.
CH2: I_D, 2 A / div., 10 ms / div.
PIV = 54.466 V, $I_{D(\text{MAX})} = 5.7866$ A.

Figure 64 – 115 VAC 60 Hz.
CH1: V_D, 20 V / div., 10 ms / div.
CH2: I_D, 2 A / div., 10 ms / div.
PIV = 56.047 V, $I_{D(\text{MAX})} = 5.6285$ A.

Figure 65 – 230 VAC 50 Hz.
CH1: V_D, 20 V / div., 10 ms / div.
CH2: I_D, 2 A / div., 10 ms / div.
PIV = 78.182 V, $I_{D(\text{MAX})} = 5.2332$ A.

Figure 66 – 265 VAC 50 Hz.
CH1: V_D, 20 V / div., 10 ms / div.
CH2: I_D, 4 A / div., 10 ms / div.
PIV = 82.925 V, $I_{D(\text{MAX})} = 5.4071$ A.
11.3.4.2 0% Load

Figure 67 – 85 VAC 60 Hz.
- CH1: \(V_D \), 20 V / div., 10 ms / div.
- CH2: \(I_D \), 2 A / div., 10 ms / div.
- PIV = 41.818 V, \(I_{D(\text{MAX})} = 5.3913 \) A.

Figure 68 – 115 VAC 60 Hz.
- CH1: \(V_D \), 20 V / div., 10 ms / div.
- CH2: \(I_D \), 2 A / div., 10 ms / div.
- PIV = 56.047 V, \(I_{D(\text{MAX})} = 5.2332 \) A.

Figure 69 – 230 VAC 50 Hz.
- CH1: \(V_D \), 20 V / div., 10 ms / div.
- CH2: \(I_D \), 2 A / div., 10 ms / div.
- PIV = 78.972 V, \(I_{D(\text{MAX})} = 4.996 \) A.

Figure 70 – 265 VAC 50 Hz.
- CH1: \(V_D \), 20 V / div., 10 ms / div.
- CH2: \(I_D \), 4 A / div., 10 ms / div.
- PIV = 81.344 V, \(I_{D(\text{MAX})} = 5.0909 \) A.
11.4 Brown-In and Brown-Out

11.4.1 Without UV Sensing

Figure 71 – Brown-In, Full Load.
- CH1: \(I_{DS}\), 500 mA / div., 100 s / div.
- CH2: \(I_{OUT}\), 1 A / div., 100 s / div.
- CH3: \(V_{IN}\), 100 V / div., 100 s / div.
- CH4: \(V_{OUT}\), 10 V / div., 100 s / div.

Figure 72 – Brown-Out, Full Load.
- CH1: \(I_{DS}\), 500 mA / div., 100 s / div.
- CH2: \(I_{OUT}\), 1 A / div., 100 s / div.
- CH3: \(V_{IN}\), 100 V / div., 100 s / div.
- CH4: \(V_{OUT}\), 10 V / div., 100 s / div.

11.4.2 With UV sensing

Figure 73 – Brown-In, Full Load.
- CH1: \(I_{DS}\), 500 mA / div., 100 s / div.
- CH2: \(I_{OUT}\), 1 A / div., 100 s / div.
- CH3: \(V_{IN}\), 100 V / div., 100 s / div.
- CH4: \(V_{OUT}\), 10 V / div., 100 s / div.

Figure 74 – Brown-In, Full Load.
- CH1: \(I_{DS}\), 500 mA / div., 100 s / div.
- CH2: \(I_{OUT}\), 1 A / div., 100 s / div.
- CH3: \(V_{IN}\), 100 V / div., 100 s / div.
- CH4: \(V_{OUT}\), 10 V / div., 100 s / div.
11.5 **Fault Conditions**

11.5.1 Output Overvoltage

11.5.1.1 100% Load, 25 °C

Figure 75 – 85 VAC 60 Hz.
- CH1: V_{DS}, 400 V / div., 20 ms / div.
- CH2: V_{OUT}, 5 V / div., 20 ms / div.
- CH3: I_{OUT}, 500 mA / div., 20 ms / div.
- $V_{OUT(\text{MAX})} = 13.893$ V.

Figure 76 – 115 VAC 60 Hz.
- CH1: V_{DS}, 400 V / div., 20 ms / div.
- CH2: V_{OUT}, 5 V / div., 20 ms / div.
- CH3: I_{OUT}, 500 mA / div., 20 ms / div.
- $V_{OUT(\text{MAX})} = 14.289$ V.

Figure 77 – 230 VAC 50 Hz.
- CH1: V_{DS}, 400 V / div., 20 ms / div.
- CH2: V_{OUT}, 5 V / div., 20 ms / div.
- CH3: I_{OUT}, 500 mA / div., 20 ms / div.
- $V_{OUT(\text{MAX})} = 14.289$ V.

Figure 78 – 265 VAC 50 Hz.
- CH1: V_{DS}, 400 V / div., 20 ms / div.
- CH2: V_{OUT}, 5 V / div., 20 ms / div.
- CH3: I_{OUT}, 500 mA / div., 20 ms / div.
- $V_{OUT(\text{MAX})} = 14.289$ V.
11.5.1.2 0% Load, 25 ºC

Figure 79 – 85 VAC 60 Hz.
CH1: V_{DS}, 400 V / div., 20 ms / div.
CH2: V_{OUT}, 5 V / div., 20 ms / div.
CH3: I_{OUT}, 500 mA / div., 20 ms / div.
$V_{OUT(\text{MAX})} = 14.881$ V.

Figure 80 – 115 VAC 60 Hz.
CH1: V_{DS}, 400 V / div., 20 ms / div.
CH2: V_{OUT}, 5 V / div., 20 ms / div.
CH3: I_{OUT}, 500 mA / div., 20 ms / div.
$V_{OUT(\text{MAX})} = 14.684$ V.

Figure 81 – 230 VAC 50 Hz.
CH1: V_{DS}, 400 V / div., 20 ms / div.
CH2: V_{OUT}, 5 V / div., 20 ms / div.
CH3: I_{OUT}, 500 mA / div., 20 ms / div.
$V_{OUT(\text{MAX})} = 14.486$ V.

Figure 82 – 265 VAC 50 Hz.
CH1: V_{DS}, 400 V / div., 20 ms / div.
CH2: V_{OUT}, 5 V / div., 20 ms / div.
CH3: I_{OUT}, 500 mA / div., 20 ms / div.
$V_{OUT(\text{MAX})} = 14.486$ V.
11.5.1.3 OVP at 50 °C

Figure 83 – 85 VAC 60 Hz, Full Load.
CH1: V_{DS}, 400 V / div., 20 ms / div.
CH2: V_{OUT}, 5 V / div., 20 ms / div.
CH3: I_{OUT}, 500 mA / div., 20 ms / div.
$V_{OUT(\text{MAX})} = 14.091$ V.

Figure 84 – 85 VAC 60 Hz, No-Load.
CH1: V_{DS}, 400 V / div., 20 ms / div.
CH2: V_{OUT}, 5 V / div., 20 ms / div.
CH3: I_{OUT}, 500 mA / div., 20 ms / div.
$V_{OUT(\text{MAX})} = 15.079$ V.

Figure 85 – 265 VAC 50 Hz, Full Load.
CH1: V_{DS}, 400 V / div., 20 ms / div.
CH2: V_{OUT}, 5 V / div., 20 ms / div.
CH3: I_{OUT}, 500 mA / div., 20 ms / div.
$V_{OUT(\text{MAX})} = 14.684$ V.

Figure 86 – 265 VAC 50 Hz, No-Load.
CH1: V_{DS}, 400 V / div., 20 ms / div.
CH2: V_{OUT}, 5 V / div., 20 ms / div.
CH3: I_{OUT}, 500 mA / div., 20 ms / div.
$V_{OUT(\text{MAX})} = 14.881$ V.
11.5.1.4 OVP at 0 °C

Figure 87 – 85 VAC 60 Hz, Full Load.
- CH1: V_{DS}, 400 V / div., 20 ms / div.
- CH2: V_{OUT}, 5 V / div., 20 ms / div.
- CH3: I_{OUT}, 500 mA / div., 20 ms / div.
- $V_{OUT(\text{MAX})} = 13.893$ V.

Figure 88 – 85 VAC 60 Hz, No-Load.
- CH1: V_{DS}, 400 V / div., 20 ms / div.
- CH2: V_{OUT}, 5 V / div., 20 ms / div.
- CH3: I_{OUT}, 500 mA / div., 20 ms / div.
- $V_{OUT(\text{MAX})} = 14.881$ V.

Figure 89 – 265 VAC 50 Hz, Full Load.
- CH1: V_{DS}, 400 V / div., 20 ms / div.
- CH2: V_{OUT}, 5 V / div., 20 ms / div.
- CH3: I_{OUT}, 500 mA / div., 20 ms / div.
- $V_{OUT(\text{MAX})} = 14.289$ V.

Figure 90 – 265 VAC 50 Hz, No-Load.
- CH1: V_{DS}, 400 V / div., 20 ms / div.
- CH2: V_{OUT}, 5 V / div., 20 ms / div.
- CH3: I_{OUT}, 500 mA / div., 20 ms / div.
- $V_{OUT(\text{MAX})} = 14.684$ V.
11.5.2 Output Short Circuit

Test Condition: Short circuit applied at normal operation

Figure 91 – 85 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 50 ms / div.
CH3: I_{DS}, 200 mA / div., 50 ms / div.
$V_{DS,MAX} = 268.77$ V.
$I_{DS,MAX} = 705.14$ mA.

Figure 92 – 85 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 5 μs / div.
CH3: I_{DS}, 200 mA / div., 5 μs / div.
$I_{LIM,MAX} = 612.46$ mA

Figure 93 – 265 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 50 ms / div.
CH3: I_{DS}, 200 mA / div., 50 ms / div.
$V_{DS,MAX} = 521.74$ V.
$I_{DS,MAX} = 1.0055$ A.

Figure 94 – 265 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 5 μs / div.
CH3: I_{DS}, 200 mA / div., 5 μs / div.
$I_{LIM,MAX} = 802.77$ mA
11.5.3 Output Overload
Test Condition: Output current step from 1A to 1.3A

Figure 95 – 85 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 50 ms / div.
CH3: I_{DS}, 200 mA / div., 50 ms / div.
$V_{DS,\text{MAX}} = 276.68$ V.
$I_{DS,\text{MAX}} = 689.33$ mA.

Figure 96 – 85 VAC 60 Hz.
CH1: V_{DS}, 200 V / div., 5 µs / div.
CH3: I_{DS}, 200 mA / div., 5 µs / div.
$I_{\text{LIM,MAX}} = 713.04$ mA.

Figure 97 – 265 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 50 ms / div.
CH3: I_{DS}, 200 mA / div., 50 ms / div.
$V_{DS,\text{MAX}} = 529.64$ V.
$I_{DS,\text{MAX}} = 989.72$ mA.

Figure 98 – 265 VAC 50 Hz.
CH1: V_{DS}, 200 V / div., 5 µs / div.
CH3: I_{DS}, 200 mA / div., 5 µs / div.
$I_{\text{LIM,MAX}} = 826.99$ mA.
Test Condition: Output current slowly ramped from 1A to 1.3A

Figure 99 – 85 VAC 60 Hz.
CH2: V_{OUT}, 5 V / div., 5 s / div.
CH3: I_{OUT}, 500 mA / div., 5 s / div.
Math1: P_{OUT}, 5 W / div., 5 s / div.
\(P_{O,\text{MAX}} = 14.436 \text{ W} \)

Figure 100 – 115 VAC 60 Hz.
CH2: V_{OUT}, 5 V / div., 5 s / div.
CH3: I_{OUT}, 500 mA / div., 5 s / div.
Math1: P_{OUT}, 5 W / div., 5 s / div.
\(P_{O,\text{MAX}} = 15.588 \text{ W} \)

Figure 101 – 230 VAC 50 Hz.
CH2: V_{OUT}, 5 V / div., 5 s / div.
CH3: I_{OUT}, 500 mA / div., 5 s / div.
Math1: P_{OUT}, 5 W / div., 5 s / div.
\(P_{O,\text{MAX}} = 15.093 \text{ W} \)

Figure 102 – 265 VAC 50 Hz.
CH2: V_{OUT}, 5 V / div., 5 s / div.
CH3: I_{OUT}, 500 mA / div., 5 s / div.
Math1: P_{OUT}, 5 W / div., 5 s / div.
\(P_{O,\text{MAX}} = 15.582 \text{ W} \)
11.6 **Output Voltage Ripple**

11.6.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pick-up. Details of the probe modification are provided in the Figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μF / 50 V ceramic type and one (1) 47 μF / 50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

![Probe Ground](image1)

![Probe Tip](image2)

Figure 103 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed.)

![Probe Ground](image3)

![Probe Tip](image4)

Figure 104 – Oscilloscope Probe with Probe Master (www.probemaster.com) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added.)
11.6.2 Measurement Results

11.6.2.1 100% Load Condition

Figure 105 – 85 VAC 60 Hz.
CH4: V_{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 75.889 mV.

Figure 106 – 115 VAC 60 Hz.
CH4: V_{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 66.403 mV.

Figure 107 – 230 VAC 50 Hz.
CH4: V_{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 60.079 mV.

Figure 108 – 265 VAC 50 Hz.
CH4: V_{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 60.079 mV.
11.6.2.2 75% Load Condition

Figure 109 – 85 VAC 60 Hz.
CH4: V_OUT, 40 mV / div., 50 ms / div.
Zoom: 10 µs / div.
Output Ripple = 71.146 mV.

Figure 110 – 115 VAC 60 Hz.
CH4: V_OUT, 40 mV / div., 50 ms / div.
Zoom: 10 µs / div.
Output Ripple = 63.241 mV.

Figure 111 – 230 VAC 50 Hz.
CH4: V_OUT, 40 mV / div., 50 ms / div.
Zoom: 10 µs / div.
Output Ripple = 55.336 mV.

Figure 112 – 265 VAC 50 Hz.
CH4: V_OUT, 40 mV / div., 50 ms / div.
Zoom: 10 µs / div.
Output Ripple = 55.336 mV.
11.6.2.3 50% Load Condition

Figure 113 – 85 VAC 60 Hz.
CH4: V_{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 56.917 mV.

Figure 114 – 115 VAC 60 Hz.
CH4: V_{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 56.917 mV.

Figure 115 – 230 VAC 50 Hz.
CH4: V_{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 50.593 mV.

Figure 116 – 265 VAC 50 Hz.
CH4: V_{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 49.012 mV.
11.6.2.4 25% Load Condition

Figure 117 – 85 VAC 60 Hz.
CH4: V\textsubscript{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 33.202 mV.

Figure 118 – 115 VAC 60 Hz.
CH4: V\textsubscript{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 33.202 mV.

Figure 119 – 230 VAC 50 Hz.
CH4: V\textsubscript{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 37.945 mV.

Figure 120 – 265 VAC 50 Hz.
CH4: V\textsubscript{OUT}, 40 mV / div., 50 ms / div.
Zoom: 10 μs / div.
Output Ripple = 39.526 mV.
11.6.2.5 0% Load Condition

Figure 121 – 85 VAC 60 Hz.

- CH4: V_{OUT}, 40 mV / div., 50 ms / div.
- Zoom: 10 µs / div.
- Output Ripple = 11.067 mV.

Figure 122 – 115 VAC 60 Hz.

- CH4: V_{OUT}, 40 mV / div., 50 ms / div.
- Zoom: 10 µs / div.
- Output Ripple = 12.648 mV.

Figure 123 – 230 VAC 50 Hz.

- CH4: V_{OUT}, 40 mV / div., 50 ms / div.
- Zoom: 10 µs / div.
- Output Ripple = 15.81 mV.

Figure 124 – 265 VAC 50 Hz.

- CH4: V_{OUT}, 40 mV / div., 50 ms / div.
- Zoom: 10 µs / div.
- Output Ripple = 15.81 mV.
11.6.3 Output Ripple Voltage Graph from 0% - 100%

Figure 125 – Measured at the Board Output Terminals at Room Temperature.
12 Thermal Performance

12.1 Test Set-Up

Thermal evaluation was performed under two conditions: (1) room temperature with the circuit board enclosed inside an acrylic box and (2), 50 ºC ambient inside a thermal chamber. In both conditions, the circuit is soaked for two hours under full load conditions.

Note: In all thermal testing data, package D (SO-8C) was used instead of package P (DIP-8C).

Figure 126 – Thermal Performance Set-up Using an Acrylic Box.

Figure 127 – Thermal Performance Set-up Using Thermal Chamber.
12.2 **Thermal Performance at Room Temperature**

12.2.1 85 VAC at room temperature

![Thermal Performance at 85 VAC, Full Load Using TNY288D.](image)

Figure 128 – Thermal Performance at 85 VAC, Full Load Using TNY288D.

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitor (C2)</td>
<td>57.9</td>
</tr>
<tr>
<td>Transformer (T1)</td>
<td>63.9</td>
</tr>
<tr>
<td>TNY288 (U1)</td>
<td>89.6</td>
</tr>
<tr>
<td>Output Capacitor (C7)</td>
<td>49.0</td>
</tr>
<tr>
<td>Output Diode (D3)</td>
<td>81.7</td>
</tr>
<tr>
<td>Ambient</td>
<td>26.0</td>
</tr>
</tbody>
</table>
12.2.2 265 VAC at Room Temperature

![Figure 129 – Thermal Performance at 265 VAC, Full Load Using TNY288D.](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitor (C2)</td>
<td>53.7</td>
</tr>
<tr>
<td>Transformer (T1)</td>
<td>71.6</td>
</tr>
<tr>
<td>TNY288 (U1)</td>
<td>84.2</td>
</tr>
<tr>
<td>Output Capacitor (C7)</td>
<td>54.1</td>
</tr>
<tr>
<td>Output Diode (D3)</td>
<td>87.1</td>
</tr>
<tr>
<td>Ambient</td>
<td>26.5</td>
</tr>
</tbody>
</table>
12.3 **Thermal Performance at 50°C**

12.3.1 85 VAC at 50°C

![Thermal Performance at 85 VAC, Full Load Using TNY288D.](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>51.0</td>
</tr>
<tr>
<td>Input Capacitor (C2)</td>
<td>69.9</td>
</tr>
<tr>
<td>TNY288 (U1)</td>
<td>93.2</td>
</tr>
<tr>
<td>Transformer Core (T1)</td>
<td>75.2</td>
</tr>
<tr>
<td>Transformer Wire (T1)</td>
<td>76.6</td>
</tr>
<tr>
<td>Output Capacitor (C7)</td>
<td>70.3</td>
</tr>
<tr>
<td>Output Diode (D3)</td>
<td>91.6</td>
</tr>
</tbody>
</table>

Figure 130 – Thermal Performance at 85 VAC, Full Load Using TNY288D.
Figure 131 – Thermal Performance at 265 VAC, Full Load Using TNY288D.

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>50.4</td>
</tr>
<tr>
<td>Input Capacitor (C2)</td>
<td>66.8</td>
</tr>
<tr>
<td>TNY288 (U1)</td>
<td>87.9</td>
</tr>
<tr>
<td>Transformer Core (T1)</td>
<td>69.5</td>
</tr>
<tr>
<td>Transformer Wire (T1)</td>
<td>71.5</td>
</tr>
<tr>
<td>Output Capacitor (C7)</td>
<td>64.2</td>
</tr>
<tr>
<td>Output Diode (D3)</td>
<td>85.8</td>
</tr>
</tbody>
</table>
12.4 Over Temperature Protection

12.4.1 OTP at 85 VAC

![Graph showing Over Temperature Protection at 85 VAC using TNY288D.]

Figure 132 – Over Temperature Protection at 85 VAC Using TNY288D.

<table>
<thead>
<tr>
<th>Component</th>
<th>At OTP Trigger Temperature (°C)</th>
<th>At Recovery Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>109.2</td>
<td>73.5</td>
</tr>
<tr>
<td>Input Capacitor (C2)</td>
<td>110.7</td>
<td>84.9</td>
</tr>
<tr>
<td>TNY288 (U1)</td>
<td>141.2</td>
<td>84.6</td>
</tr>
<tr>
<td>Transformer Core (T1)</td>
<td>114.2</td>
<td>85.5</td>
</tr>
<tr>
<td>Transformer Wire (T1)</td>
<td>116.0</td>
<td>85.3</td>
</tr>
<tr>
<td>Output Capacitor (C7)</td>
<td>107.2</td>
<td>85.5</td>
</tr>
<tr>
<td>Output Diode (D3)</td>
<td>130.6</td>
<td>84.6</td>
</tr>
</tbody>
</table>
OTP at 265 VAC

Figure 133 – Over Temperature Protection at 265 VAC using TNY288D.

<table>
<thead>
<tr>
<th>Component</th>
<th>At OTP Trigger Temperature (°C)</th>
<th>At Recovery Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>120.3</td>
<td>65.8</td>
</tr>
<tr>
<td>Input Capacitor (C2)</td>
<td>115.9</td>
<td>81.3</td>
</tr>
<tr>
<td>TNY288 (U1)</td>
<td>144.0</td>
<td>83.5</td>
</tr>
<tr>
<td>Transformer Core (T1)</td>
<td>133.6</td>
<td>81.4</td>
</tr>
<tr>
<td>Transformer Wire (T1)</td>
<td>133.0</td>
<td>81.2</td>
</tr>
<tr>
<td>Output Capacitor (C7)</td>
<td>122.1</td>
<td>81.7</td>
</tr>
<tr>
<td>Output Diode (D3)</td>
<td>145.3</td>
<td>79.5</td>
</tr>
</tbody>
</table>
13 **Conducted EMI**

Conducted emissions tests were performed at 115 VAC and 230 VAC at full load (12 V, 1 A). Measurements were taken with an Artificial Hand connected and a floating DC output load resistor. A DC output cable was included.

13.1 **Test Set-up Equipment**

13.1.1 Equipment and Load Used

1. Rohde and Schwarz ENV216 two line V-network.
2. Rohde and Schwarz ESRP EMI test receiver.
3. Hioki 3322 power Hi-tester.
4. Chroma measurement test fixture.
5. Input voltage set at 115 VAC and 230 VAC.

13.2 **Test Set-up**

![Figure 134 – EMI Test Set-up.](image-url)
13.3 Test Results

Figure 135 – 115 VAC 60 Hz, Line with Artificial Hand.

Figure 136 – 115 VAC 60 Hz, Neutral with Artificial Hand.

Figure 137 – 230 VAC 60 Hz, Line with Artificial Hand.

Figure 138 – 230 VAC 60 Hz, Neutral with Artificial Hand.
14 **Line Surge**

Differential and common mode input line surge testing was completed on a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at full load and operation was verified following each surge event.

14.1 *Differential and Common Mode Surge*

<table>
<thead>
<tr>
<th>DM Surge Level (V)</th>
<th>Input Voltage (VAC)</th>
<th>Injection Location</th>
<th>Injection Phase (º)</th>
<th>Test Result (Pass/Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1000</td>
<td>230</td>
<td>L to N</td>
<td>0</td>
<td>Pass</td>
</tr>
<tr>
<td>-1000</td>
<td>230</td>
<td>L to N</td>
<td>0</td>
<td>Pass</td>
</tr>
<tr>
<td>+1000</td>
<td>230</td>
<td>L to N</td>
<td>90</td>
<td>Pass</td>
</tr>
<tr>
<td>-1000</td>
<td>230</td>
<td>L to N</td>
<td>90</td>
<td>Pass</td>
</tr>
<tr>
<td>+1000</td>
<td>230</td>
<td>L to N</td>
<td>180</td>
<td>Pass</td>
</tr>
<tr>
<td>-1000</td>
<td>230</td>
<td>L to N</td>
<td>270</td>
<td>Pass</td>
</tr>
<tr>
<td>+1000</td>
<td>230</td>
<td>L to N</td>
<td>180</td>
<td>Pass</td>
</tr>
<tr>
<td>-1000</td>
<td>230</td>
<td>L to N</td>
<td>90</td>
<td>Pass</td>
</tr>
<tr>
<td>+1000</td>
<td>230</td>
<td>L to N</td>
<td>270</td>
<td>Pass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CM Surge Level (V)</th>
<th>Input Voltage (VAC)</th>
<th>Injection Location</th>
<th>Injection Phase (º)</th>
<th>Test Result (Pass/Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2000</td>
<td>230</td>
<td>L, N to PE</td>
<td>0</td>
<td>Pass</td>
</tr>
<tr>
<td>-2000</td>
<td>230</td>
<td>L, N to PE</td>
<td>0</td>
<td>Pass</td>
</tr>
<tr>
<td>+2000</td>
<td>230</td>
<td>L, N to PE</td>
<td>90</td>
<td>Pass</td>
</tr>
<tr>
<td>-2000</td>
<td>230</td>
<td>L, N to PE</td>
<td>90</td>
<td>Pass</td>
</tr>
<tr>
<td>+2000</td>
<td>230</td>
<td>L, N to PE</td>
<td>180</td>
<td>Pass</td>
</tr>
<tr>
<td>-2000</td>
<td>230</td>
<td>L, N to PE</td>
<td>180</td>
<td>Pass</td>
</tr>
<tr>
<td>+2000</td>
<td>230</td>
<td>L, N to PE</td>
<td>270</td>
<td>Pass</td>
</tr>
<tr>
<td>-2000</td>
<td>230</td>
<td>L, N to PE</td>
<td>270</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Note: In all PASS results, no damage and no auto-restart was observed.
Figure 139 – DM Surge. \(V_{DS(\text{MAX})} = 702 \text{ V} \).

Figure 140 – CM Surge. \(V_{DS(\text{MAX})} = 613 \text{ V} \).

14.2 Ring Wave

<table>
<thead>
<tr>
<th>Surge Level (V)</th>
<th>Input Voltage (VAC)</th>
<th>Injection Location</th>
<th>Injection Phase (º)</th>
<th>Test Result (Pass/Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3000</td>
<td>230</td>
<td>L, N to PE</td>
<td>0</td>
<td>Pass</td>
</tr>
<tr>
<td>-3000</td>
<td>230</td>
<td>L, N to PE</td>
<td>0</td>
<td>Pass</td>
</tr>
<tr>
<td>+3000</td>
<td>230</td>
<td>L, N to PE</td>
<td>90</td>
<td>Pass</td>
</tr>
<tr>
<td>-3000</td>
<td>230</td>
<td>L, N to PE</td>
<td>90</td>
<td>Pass</td>
</tr>
<tr>
<td>+3000</td>
<td>230</td>
<td>L, N to PE</td>
<td>180</td>
<td>Pass</td>
</tr>
<tr>
<td>-3000</td>
<td>230</td>
<td>L, N to PE</td>
<td>180</td>
<td>Pass</td>
</tr>
<tr>
<td>+3000</td>
<td>230</td>
<td>L, N to PE</td>
<td>270</td>
<td>Pass</td>
</tr>
<tr>
<td>-3000</td>
<td>230</td>
<td>L, N to PE</td>
<td>270</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Note: In all PASS results, no damage and no auto-restart was observed.
14.3 Electrical Fast Transient (EFT)

<table>
<thead>
<tr>
<th>Surge Level (V)</th>
<th>Injection Phase (°)</th>
<th>Frequency</th>
<th>T-Burst</th>
<th>T-Rep</th>
<th>Test Duration</th>
<th>Injection Location</th>
<th>Result (PASS,FAIL,AR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4000</td>
<td>0</td>
<td>2.5 kHz</td>
<td>30 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>0</td>
<td>2.5 kHz</td>
<td>30 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>+4000</td>
<td>0</td>
<td>5 kHz</td>
<td>15 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>0</td>
<td>5 kHz</td>
<td>15 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>+4000</td>
<td>0</td>
<td>100 kHz</td>
<td>750 μs</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>0</td>
<td>100 kHz</td>
<td>750 μs</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>+4000</td>
<td>90</td>
<td>2.5 kHz</td>
<td>30 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>90</td>
<td>2.5 kHz</td>
<td>30 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>+4000</td>
<td>90</td>
<td>5 kHz</td>
<td>15 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>90</td>
<td>5 kHz</td>
<td>15 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>+4000</td>
<td>90</td>
<td>100 kHz</td>
<td>750 μs</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>90</td>
<td>100 kHz</td>
<td>750 μs</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>+4000</td>
<td>270</td>
<td>2.5 kHz</td>
<td>30 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>270</td>
<td>2.5 kHz</td>
<td>30 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>+4000</td>
<td>270</td>
<td>5 kHz</td>
<td>15 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>270</td>
<td>5 kHz</td>
<td>15 ms</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>+4000</td>
<td>270</td>
<td>100 kHz</td>
<td>750 μs</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
<tr>
<td>-4000</td>
<td>270</td>
<td>100 kHz</td>
<td>750 μs</td>
<td>300 ms</td>
<td>120 s</td>
<td>L to N</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Note: In all PASS results, no damage and no auto-restart was observed.
15 **ESD**

Passed ±8 kV contact discharge

<table>
<thead>
<tr>
<th>Contact Voltage (kV)</th>
<th>Applied to</th>
<th>Number of Strikes</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+8</td>
<td>+12 V terminal</td>
<td>10</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>RTN terminal</td>
<td>10</td>
<td>Pass</td>
</tr>
<tr>
<td>-8</td>
<td>+12 V terminal</td>
<td>10</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>RTN terminal</td>
<td>10</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Note: In all PASS results, no damage and no auto-restart was observed.

Passed ±15 kV Air discharge.

<table>
<thead>
<tr>
<th>Air Discharge Voltage (kV)</th>
<th>Applied to</th>
<th>Number of Strikes</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+15</td>
<td>+12 V terminal</td>
<td>10</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>RTN terminal</td>
<td>10</td>
<td>Pass</td>
</tr>
<tr>
<td>-15</td>
<td>+12 V terminal</td>
<td>10</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>RTN terminal</td>
<td>10</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Note: In all PASS results, no damage and no auto-restart was observed.
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Revision</th>
<th>Description and Changes</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-Jul-19</td>
<td>JPB</td>
<td>1.0</td>
<td>Initial Release.</td>
<td>Apps & Mktg</td>
</tr>
<tr>
<td>13-Aug-19</td>
<td>JPB</td>
<td>1.1</td>
<td>Added output short circuit (11.5.2) and overload (11.5.3)</td>
<td>Apps & Mktg</td>
</tr>
</tbody>
</table>
For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations’ gate drivers in particular applications and/or with certain power modules. These proposals are “as is” and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information
The products and applications illustrated herein (including transformer construction and circuits’ external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-650-644-8000
Americas: +1-408-414-9621
email: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caixi Road,
Shanghai, PRC 200030
Phone: +86-21-6354-6323
e-mail: chinachina@power.com

CHINA (SHENZHEN)

17/F, Hivic Building, No. 2, Keji Nan 8th Road, Nanshan District,
Shenzhen, China, 518057
Phone: +86-755-8672-8689
e-mail: chinachina@power.com

GERMANY (AC-DC/LED Sales)

Einsteinring 24
85609 Dornach/Aschheim,
Germany
Tel: +49-89-5527-39100
email: eurosales@power.com

GERMANY (Gate Driver Sales)

HellwegForum 1
59469 Ense,
Germany
Tel: +49-2938-64-39990
email: igbt-driver.sales@power.com

INDIA

#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
email: indiasales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg.
1-7-9, Shin-Yokohama, Kokoku-ku
Yokohama-shi,
Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

ITALY

Via Milanese 20, 3rd Fl.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com

SINGAPORE

51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail: taiwansales@power.com

UK

Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com