Introduction

This document describes a simple Design Methodology for flyback power supply design using the TinySwitch family of integrated off-line switchers. The objective of this Design Methodology is to provide power supply engineers a handy tool that not only eases the design task but also delivers design optimization in cost and efficiency for most applications.

Basic Circuit Configuration

Because of the high level integration of TinySwitch, flyback power supply design is greatly simplified. As a result, the basic circuit configuration of TinySwitch flyback power supplies remains unchanged from application to application. Application specific issues outside this basic configuration such as constant current, constant power outputs, etc. are beyond the scope of this document.

Figure 1 shows the basic circuit configuration in a typical TinySwitch flyback design using TNY253.

Design Flow

Figures 2A, B and C present a design flow chart showing the complete design procedure in 22 steps. The logic behind this Design Methodology can be summarized as follows:

1. Calculate minimum reflected voltage, \(V_{or} \), allowed by a given output diode.
2. Design for discontinuous mode operation using this calculated \(V_{or} \). If necessary, increase \(V_{or} \).
3. At \(V_{or} = 150 \) V, select bigger TinySwitch to stay in discontinuous mode or go to continuous mode design.
4. Design transformer using EE16 core.
5. Select feedback circuit and other components to complete the design.
Figure 2A. TinySwitch Flyback Design Flowchart Steps 1 to 7.
Figure 2B. TinySwitch Flyback Design Flowchart Steps 8 to 17A, B.
Figure 2C. TinySwitch Flyback Design Flowchart Steps 18-22.
Step by Step Design Procedure

Symbols and parameters used in this design procedure are defined in Application Note “TOPSwitch Flyback Design Methodology” (AN-16).

Step 1.
Determine system requirements: V_{ACMIN}, V_{ACMAX}, f_L, V_o, P_o, \eta

- Determine input voltage range from Table 1.

<table>
<thead>
<tr>
<th>Input (VAC)</th>
<th>V_{ACMIN} (VAC)</th>
<th>V_{ACMAX} (VAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/115</td>
<td>85</td>
<td>132</td>
</tr>
<tr>
<td>230</td>
<td>195</td>
<td>265</td>
</tr>
<tr>
<td>Universal</td>
<td>85</td>
<td>265</td>
</tr>
</tbody>
</table>

Table 1. Input Voltage Range.

Step 2.
Select output diode. Estimate associated efficiency loss.

- The output diode can be selected based on expected power supply efficiency and cost (see Table 2).
 - Use a Schottky diode for highest efficiency for output voltages up to 7.5 V.
 - For output voltages beyond 7.5 V use an Ultra Fast PN-diode.
 - If efficiency is not a concern (or cost is paramount), use a Fast PN-diode.
 - Choose output diode type. Table 2 shows approximate forward voltage (V_D) for types of output diode discussed above.

<table>
<thead>
<tr>
<th>Output Diode</th>
<th>V_R (V)</th>
<th>I_D (A)</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schottky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN5819</td>
<td>40</td>
<td>1.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>IN5822</td>
<td>40</td>
<td>3.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>MBR745</td>
<td>45</td>
<td>7.5</td>
<td>Motorola</td>
</tr>
<tr>
<td>MBR1045</td>
<td>45</td>
<td>10.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>MBR1645</td>
<td>45</td>
<td>16.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>UFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UF4002</td>
<td>100</td>
<td>1.0</td>
<td>GI</td>
</tr>
<tr>
<td>MUR110</td>
<td>100</td>
<td>1.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>MUR120</td>
<td>200</td>
<td>1.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>UF4003</td>
<td>200</td>
<td>1.0</td>
<td>GI</td>
</tr>
<tr>
<td>BYV27-200</td>
<td>200</td>
<td>2.0</td>
<td>Philips, GI</td>
</tr>
<tr>
<td>UF5401</td>
<td>100</td>
<td>3.0</td>
<td>GI</td>
</tr>
<tr>
<td>UF5402</td>
<td>200</td>
<td>3.0</td>
<td>GI</td>
</tr>
<tr>
<td>MUR410</td>
<td>100</td>
<td>4.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>MUR420</td>
<td>200</td>
<td>4.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>MUR810</td>
<td>100</td>
<td>8.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>MUR820</td>
<td>200</td>
<td>8.0</td>
<td>Motorola</td>
</tr>
<tr>
<td>BYW29-200</td>
<td>200</td>
<td>8.0</td>
<td>Philips, GI</td>
</tr>
<tr>
<td>BYV32-200</td>
<td>200</td>
<td>20.0</td>
<td>Philips</td>
</tr>
</tbody>
</table>

Table 3. Output diodes.

- Output diode efficiency loss is the power supply efficiency reduction (in percentage) caused by the diode.

<table>
<thead>
<tr>
<th>Diode Type</th>
<th>V_D (V)</th>
<th>Efficiency Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schottky</td>
<td>0.5</td>
<td>((0.5/V_{R}) \times 100%)</td>
</tr>
<tr>
<td>Ultrafast-PN</td>
<td>1.0</td>
<td>((1.0/V_{R}) \times 100%)</td>
</tr>
<tr>
<td>Fast-PN</td>
<td>1.0</td>
<td>((1.0/V_{R}) \times 100%)</td>
</tr>
</tbody>
</table>

Table 2. Diode forward voltage (V_D) and efficiency loss.

- The estimated efficiency loss due to the output diode is also shown in Table 2.
- Table 3 shows some commonly used output diodes. V_R is the diode reverse voltage rating. I_D is the diode DC current rating.
- The final diode current rating is to be determined in Step 20 to accommodate continuous short circuit current I_{ss}.

Step 3.
Select clamp/snubber circuit and determine associated efficiency loss.

- Clamp/snubber circuit is required at DRAIN to keep DRAIN voltage below rated BV:
 - A snubber alone may be used at low power (< 3 W with Universal input) and will provide lower video noise and superior EMI performance.
 - An RCD clamp may be used for power levels < 3 W for higher efficiency and is required at power levels > 3 W with Universal input.

- Table 4 shows the approximate efficiency loss due to clamp/snubber circuits.

<table>
<thead>
<tr>
<th>Clamp/Snubber</th>
<th>P_o</th>
<th>Efficiency Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC Snubber</td>
<td>0 to 3 W</td>
<td>20%</td>
</tr>
<tr>
<td>RCD clamp</td>
<td>> 3 W</td>
<td>15%</td>
</tr>
</tbody>
</table>

Table 4. Clamp/Snubber efficiency loss.

Step 4.
Estimate power supply efficiency \(\eta\).

- Total efficiency loss is the sum of the output diode efficiency loss (from Step 2) and the clamp/snubber efficiency loss (from Step 3).
• Calculate overall power supply efficiency as: \(\eta = 100\% - \) total efficiency loss.

Step 5.
Determine maximum and minimum DC input voltages \(V_{\text{MAX}}, V_{\text{MIN}} \), and input storage capacitance \(C_{\text{IN}} \) (see AN-16 for more detail)

• Calculate the maximum \(V_{\text{MAX}} \) as:
\[
V_{\text{MAX}} = \sqrt{2} \times V_{\text{ACMAX}}
\]

• Choose input storage capacitor, \(C_{\text{IN}} \) per Table 5.

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>(C_{\text{IN}} (\mu\text{F/Watt}))</th>
<th>(V_{\text{MIN}} (\text{V}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/115</td>
<td>2-3</td>
<td>(\geq 90)</td>
</tr>
<tr>
<td>230</td>
<td>1</td>
<td>(\geq 240)</td>
</tr>
<tr>
<td>Universal</td>
<td>2-3</td>
<td>(\geq 90)</td>
</tr>
</tbody>
</table>

Table 5. \(C_{\text{IN}} \) Range.

• Set bridge rectifier conduction time \(t_c = 3 \text{ ms} \).
• Derive minimum DC input voltage, \(V_{\text{MIN}} \)
\[
V_{\text{MIN}} = \left[\frac{2 \times P_o \times \left(\frac{1}{2 \times f_L} - \frac{1}{t_c} \right)}{\eta \times C_{\text{IN}}} \right] + \sqrt{2} \times V_{\text{ACMIN}}^2
\]

where \(C_{\text{IN}} \) : input capacitance
\(f_L \) : line frequency
\(t_c \) : diode conduction time

Step 6.
Determine output diode peak inverse voltage \(PIV \). Calculate reflected output voltage \(V_{OR} \) based on \(V_{\text{MAX}}, V_{O}, V_{D}, \) and \(PIV \).

• Look up output diode reverse voltage \(V_R \) from diode data sheet or Table 3 in Step 2.
• Calculate maximum peak inverse voltage \(PIV \). The maximum recommended \(PIV \) is 80% of the reverse voltage rating \(V_R \):
\[
PIV = 0.8 \times V_R
\]
• Calculate reflected output voltage \(V_{OR} \):
\[
V_{OR} = \frac{V_{\text{MAX}} \times (V_O + V_D)}{PIV - V_O}
\]

• If \(V_{OR} > 150 \text{ V} \), go back to Step 2 and choose a different diode for higher \(V_R \).
• Refer to Table 6 for approximate \(V_R \) range for different types of diodes.

<table>
<thead>
<tr>
<th>Diode Type</th>
<th>(V_R (\text{V}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schottky</td>
<td>40-45</td>
</tr>
<tr>
<td>UltraFast-PN</td>
<td>100-200</td>
</tr>
<tr>
<td>Fast-PN</td>
<td>> 200</td>
</tr>
</tbody>
</table>

Table 6. Diode reverse voltage range.

Step 7.
Choose TinySwitch based on input voltage range and output power \(P_o \)*

• Select appropriate TinySwitch according to Table 7 based on output power \(P_o \) and input voltage range (from Step 1).

<table>
<thead>
<tr>
<th>Device</th>
<th>(P_o) for Single Voltage*</th>
<th>(P_o) for Universal Voltage</th>
<th>(P_o) for Single Voltage*</th>
<th>(P_o) for Universal Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNY253</td>
<td>5.0</td>
<td>2.5</td>
<td>0-2.5</td>
<td>0-1.5</td>
</tr>
<tr>
<td>TNY254</td>
<td>8.0</td>
<td>5.0</td>
<td>2.0-5.0</td>
<td>1.0-4.0</td>
</tr>
<tr>
<td>TNY255</td>
<td>10</td>
<td>7.5</td>
<td>6.0-10</td>
<td>3.5-6.5</td>
</tr>
</tbody>
</table>

Table 7. TinySwitch output power (\(P_o \)) capability

* Single Voltage 100/115 VAC with voltage doubler, or Single Voltage 230 VAC without doubler
** Based on EE16 core transformer

• For Universal input voltage and an output power range of 1W to 1.5 W, TNY254 is usually a better choice than TNY253 except for applications requiring low video noise.
• For Universal input voltage and an output power range of 3.5W to 4 W, TNY255 usually results in smaller transformer size and higher efficiency than TNY254.

Step 8.
Determine primary peak current \(I_p \). Calculate maximum duty cycle \(D_{\text{MAX}} \) for discontinuous mode of operation based on \(V_{\text{MIN}}, P_o, \) and \(I_p \).

• Primary peak current is 90% of minimum \(I_{\text{LIMIT}} \) from the data sheet of the selected TinySwitch. 0.9 is the over temperature derating factor for \(I_{\text{LIMIT}} \).
\[I_p = 0.9 \times \text{minimum } I_{\text{LIMIT}} \]

- Calculate maximum duty cycle \(D_{\text{MAX}} \) for discontinuous mode of operation as:

\[D_{\text{MAX}} = \frac{2 \times P_o}{\eta \times V_{\text{MIN}} \times I_p} \]

Step 9.

Calculate \(K_{DP} \) from \(V_{\text{MIN}}, V_{OR} \) and \(D_{\text{MAX}} \):

- \(K_{DP} \) is the ratio between the off-time of the switch and the reset time of the core:

\[K_{DP} = \frac{V_{OR} \times (1 - D_{\text{MAX}})}{V_{\text{MIN}} \times D_{\text{MAX}}} \]

Step 10, 11A, 11B, 12, 13A, 13B.

Check \(K_{DP} \) to ensure discontinuous mode of operation. Raise \(V_{OR} \) if necessary.

The mode of operation can vary depending on power supply requirements. However, discontinuous mode of operation is always recommended wherever it is possible.

- With discontinuous mode of operation, generally, the output filter is smaller, output rectifier is cheaper with PN junction diode, EMI and video noise are lower.
- Fully discontinuous mode of operation (discontinuous under all conditions) may be necessary in some applications to meet specific requirements such as very low video noise, very low output ripple voltage. Use of RC snubber, and/or PN junction diode as output rectifier also demand fully discontinuous mode of operation. This can be accomplished by raising \(V_{OR} \) higher if necessary until \(K_{DP} \geq (1 - D_{\text{MAX}})/(0.67 - D_{\text{MAX}}) \). To keep the worst case DRAIN voltage below the recommended level of 650 V, \(V_{OR} \) should be kept below 150V.
- Mostly discontinuous mode of operation \((K_{DP} \geq 1) \) refers to a design operating in discontinuous mode under most situations, but do have the possibility of operating in continuous mode occasionally.
- Continuous mode operation \((K_{DP} < 1) \) provides higher output power. In this mode a Schottky output diode should be used to prevent long diode reverse recovery times that could exceed leading edge blanking period (t_{LEB}).

Step 10.

Check for fully discontinuous operation.

- \(K_{DP} \geq (1 - D_{\text{MAX}})/(0.67 - D_{\text{MAX}}) \): Fully discontinuous. Go to Step 17A.
- \(K_{DP} < (1 - D_{\text{MAX}})/(0.67 - D_{\text{MAX}}) \): Go to Step 11.
- 0.67 is the reciprocal of the percentage of duty cycle relaxation caused by various parameters such as the tolerance in TinySwitch current limit and frequency.

Step 11A, B.

Determine if fully discontinuous is necessary.

- If yes, set \(K_{DP} = (1 - D_{\text{MAX}})/(0.67 - D_{\text{MAX}}) \).

Recalculate \(V_{OR} \) as:

\[V_{OR} = \frac{K_{DP} \times V_{\text{MIN}} \times D_{\text{MAX}}}{1 - D_{\text{MAX}}} \]

- If \(V_{OR} < 150 \text{ V} \), go to Step 17A.
- If \(V_{OR} > 150 \text{ V} \), go back to Step 7 and select higher current TinySwitch.

Step 12.

Check for mostly discontinuous.

- \(K_{DP} \geq 1 \). Operation is mostly discontinuous. Go to Step 17A.
- \(K_{DP} < 1 \). Go to Step 13.

Step 13A, B.

Determine if continuous is acceptable for the application.

- If yes, go to Step 14.
- If not, set \(K_{DP} = 1 \). Recalculate \(V_{OR} \) as:

\[V_{OR} = \frac{K_{DP} \times V_{\text{MIN}} \times D_{\text{MAX}}}{1 - D_{\text{MAX}}} \]

- If \(V_{OR} < 150 \text{ V} \), go to Step 17A.
- If \(V_{OR} > 150 \text{ V} \), go back to Step 7 and select higher current TinySwitch.
Step 14.
Recalculate D_{MAX} for continuous mode of operation from V_{MIN} and V_{OR}.

- Start continuous mode design.
- Recalculate D_{MAX} as:

$$D_{\text{MAX}} = \frac{V_{OR}}{V_{OR} + V_{\text{MIN}}}$$

Step 15.
Calculate K_{RP} from $V_{\text{MIN}}, P_O, \eta, I_p,$ and D_{MAX}.

- K_{RP} is the ratio between the primary ripple current I_p and primary peak current I_p. And I_p is 90% of minimum I_{limt}.

- From AN-16, $I_p = \frac{I_{AVG}}{(1 - \frac{K_{RP}}{2}) \times D_{\text{MAX}}}$

and $I_{AVG} = \frac{P_O}{\eta \times V_{\text{MIN}}}$

- By combining the above equations, K_{RP} can be expressed as:

$$K_{RP} = \frac{2 \times (I_p \times D_{\text{MAX}} \times \eta \times V_{\text{MIN}} - P_O)}{I_p \times D_{\text{MAX}} \times \eta \times V_{\text{MIN}}}$$

Step 16A, B, C.
Check K_{RP} against 0.6.

- $K_{RP} \geq 0.6$, go to Step 17B.
- $K_{RP} < 0.6$, set $K_{RP} = 0.6$.
 - Recalculate D_{MAX} using Step 15 equation.
 - Recalculate V_{OR} using Step 14 equation.
 - If $V_{OR} < 150$ V, go to Step 17B.
 - If $V_{OR} > 150$ V, go back to Step 7 and select higher current TinySwitch.

Step 17A, B.
Calculate primary inductance L_p.

- Continuous mode:

$$L_p = \frac{10^6 \times P_O}{\frac{K_{RP} \times (1 - \frac{K_{RP}}{2}) \times \frac{1}{0.9} \times I_p^2 \times f_s}} \times Z \times (1 - \eta) + \eta \times \eta$$

- I_p is 90% of minimum I_{limt} from TinySwitch data sheet as previously defined in Step 8.
- f_s is minimum switching frequency from TinySwitch data sheet.
- Please note the cancellation effect between the over temperature variations of I_p and f_s resulting in the additional 1/0.9 term.
- Z is loss allocation factor. If $Z = 0$, all losses are on the primary side. If $Z = 1$, all losses are on the secondary side.
- Since output diode loss and clamp/snubber loss are both secondary losses, $Z = 1$ is a reasonable starting point.

Step 18.
Design Transformer.

- Calculate turns ratio N_p / N_s:

$$\frac{N_p}{N_s} = \frac{V_{OR}}{V_O + V_D}$$

- Selecting core and bobbin
 - With triple insulated secondary wire and no margin winding, EE16 core is suitable for most TinySwitch applications.
 - To accommodate margin winding, EEL16 core must be used.
 - In below 2 W and/or space constrained applications, EE13 or EF13 cores with special bobbin meeting safety requirements may be used.

- Calculate primary and secondary number of turns for peak flux density (B_p) not to exceed 3000 gauss. **Limit B_p to 2500 gauss for low audio noise designs.** Use the lowest practical value of B_p for the greatest reduction in audio noise. See AN-24 for additional information.
- Calculate primary number of turns (N_p):

$$N_p = 100 \times I_p' \times \frac{L_p}{B_p \times A_e}$$

where I_p' equals to maximum I_{limt}
- Calculate secondary number of turns \(N_S \):

\[
N_S = \frac{N_p \times (V_o + V_d)}{V_{OR}}
\]

- Calculate gap length \(L_g \). Gap length should be larger than 0.1 mm to ensure manufacturability.

\[
L_g = 40 \times \pi \times A_t \left(\frac{N_p^2}{1000 \times L_p} - \frac{1}{A_L} \right)
\]

- Please refer to Power Integrations Web site www.powerint.com for audio noise suppression techniques applicable to transformer design.

Step 19A, B. Calculate primary RMS current \(I_{RMS} \) and secondary RMS current \(I_{SRMS} \).

- Discontinuous mode:
 - Calculate primary RMS current \(I_{RMS} \)

\[
I_{RMS} = \sqrt{D_{MAX} \times \frac{I_p^2}{3}}
\]

where \(I_p \) equals to maximum \(I_{LIMIT} \)

- Calculate secondary RMS current \(I_{SRMS} \)

\[
I_{SRMS} = I_{SP} \times \sqrt{\frac{1 - D_{MAX}}{3 \times K_{DP}}}
\]

where \(I_{SP} = I_p' \times \frac{N_p}{N_S} \)

and \(I_p' \) equals to maximum \(I_{LIMIT} \)

- Continuous mode:
 - Calculate primary RMS current \(I_{RMS} \)

\[
I_{RMS} = I_p' \times \sqrt{D_{MAX} \times \left(\frac{K_{RP}^2}{3} - K_{RP} + 1 \right)}
\]

where \(I_p' \) equals to maximum \(I_{LIMIT} \)

- Calculate secondary RMS current \(I_{SRMS} \)

\[
I_{SRMS} = I_{SP} \times \sqrt{\left(1 - D_{MAX}\right) \times \left(\frac{K_{RP}^2}{3} - K_{RP} + 1\right)}
\]

where \(I_{SP} = I_p' \times \frac{N_p}{N_S} \)

and \(I_p' \) equals to maximum \(I_{LIMIT} \)

- Choose wire gauge for primary and secondary windings based on \(I_{RMS} \) and \(I_{SRMS} \).
- In some designs, a lower gauge (larger diameter) wire may be necessary to maintain transformer temperature within acceptable limits during continuous short circuit conditions.
- Do not use wire thinner than 36 AWG to prevent excessive winding capacitance and to improve manufacturability.

Step 20. Determine output short circuit current \(I_{OS} \).

- Calculate maximum output short circuit current \(I_{OS} \) from \(I_p' \) and \(N_p/N_S \) where \(I_p' \) is the maximum \(I_{LIMIT} \) from TinySwitch data sheet and \(N_p/N_S \) is the turns ratio from Step 18:

\[
I_{OS} = I_p' \times \frac{N_p}{N_S} \times k
\]

where \(k \) is the peak to RMS current conversion factor

- The value of \(k \) is determined based on empirical measurements: \(k = 0.9 \) for Schottky diode and \(k = 0.8 \) for PN junction diode.
- Check \(I_{OS} \) against diode DC current rating \(I_D \). If necessary, choose higher current diode (see Table 3).

Step 21. Determine Output Capacitor \(C_{OUT} \).

- Calculate output ripple current:

\[
I_{ripples} = \sqrt{I_{SRMS}^2 - I_o^2}
\]

- Choose output capacitor with RMS current rating equal to or larger than output ripple current.
- Use low ESR electrolytic capacitor rated for switching power supply use.
- Examples are LXF series from UCC, PL series from Nichicon, and HFQ series from Panasonic.
Step 22.
Determine feedback circuit and output post filter.

- The output voltage of the TinySwitch flyback power supply should be sensed at the first output capacitor, which is before the output post LC filter. This way the output post LC filter is outside the feedback control loop and the resonant frequency of the output post LC filter can be as low as required to meet the output ripple specification requirement.
- Use Zener diode in series with the optocoupler LED.

- Output voltage V_o is determined by

$$V_o = V_Z + V_{LED}$$

where $V_{LED} \approx 1V$

- Replace the Zener with a TL431 for better output accuracy.
- In non-isolated design, use a bipolar NPN transistor in place of the optocoupler. Replace the LED with the base emitter junction and connect the collector to the ENABLE pin of the TinySwitch.
For the latest updates, visit our Web site: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others.

The PI Logo, TOPSwitch, TinySwitch and EcoSmart are registered trademarks of Power Integrations, Inc. ©Copyright 2001, Power Integrations, Inc.