Product Selector Guide
DC-DC Products

September 2008
Features & Benefits

The DPA-Switch Family combines a 220 V power MOSFET with a controller that provides current monitoring, undervoltage and over temperature protection, soft start and other control functions in a single device, saving up to 30 external components in the power supply design. Combining the key switching elements into a single package reduces design complexity and ensures rapid, low-risk development of highly cost-effective power supplies.

Superior Performance and Flexibility. The DPA-Switch family supports a range of power requirements in either forward or flyback topologies and offers a variety of package options to maximize design flexibility. A DIP-8 package is available for low-cost designs, and a thermally efficient TO-263-7C R package (2 °C/Watt) is available for higher power applications.

Product Highlights
- Supports flyback and forward topology
- Programmable internal current sense eliminates external sense components
- Built-in auto-restart for output overload/open loop protection
- Line undervoltage (UV) detection: meets ETSI standards
- Line overvoltage (OV) shutdown protection
- Fully integrated soft-start for minimum stress/overshoot
- Hysteretic thermal shutdown for over temperature protection and automatic recovery
- Source connected tab for low EMI

EcoSmart® Energy Efficiency
- Extremely low consumption at no-load (10 mA typ.) and in remote off (2 mA max.)
- Cycle skipping at light load for high standby efficiency

Package Information
- P and G packages have Pb-free finish (100% matte tin), are RoHS compliant and meet requirements of JEDEC standard J-STD-020C table 4.2. The R package is not available in Pb-free finish.

Typical Applications
- PoE applications: VoIP phones, WLAN, security cameras
- Telco central office equipment: xDSL, ISDN, PABX
- Distributed power architectures (24 V/48 V bus)
- Industrial controls
- LED lighting
Product Selector Guide

<table>
<thead>
<tr>
<th>Package</th>
<th>DPA422</th>
<th>DPA423</th>
<th>DPA424</th>
<th>DPA425</th>
<th>DPA426</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Power (W)</td>
<td>0.5 W</td>
<td>1 W</td>
<td>2.5 W</td>
<td>4 W</td>
<td>6 W</td>
</tr>
<tr>
<td>DPA422</td>
<td>7.5 W</td>
<td>10 W</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DPA423</td>
<td>12 W</td>
<td>16 W</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DPA424</td>
<td>16 W</td>
<td>23 W</td>
<td>35 W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DPA425</td>
<td>23 W</td>
<td>32 W</td>
<td>50 W</td>
<td>62 W</td>
<td>-</td>
</tr>
<tr>
<td>DPA426</td>
<td>25 W</td>
<td>35 W</td>
<td>55 W</td>
<td>70 W</td>
<td>83 W</td>
</tr>
</tbody>
</table>

Notes:
1. Maximum output power is limited by device internal current limit.
2. See Applications Considerations section of the DPA-Switch data sheet for complete description of assumptions and for output powers with other input voltage ranges.
3. For device dissipation of 1.5 W or below, use P or G packages. Device dissipation above 1.5 W is possible with R packages.
4. Packages: P: DIP-8, G: SMD-8, R: TO-263-7C. For lead-free package options, see Part Ordering section of the DPA-Switch data sheet.
5. Available in R package only.
6. Due to higher switching losses, the DPA425 may not deliver additional power compared to a smaller device.
7. Available in P and G package only.

Integrated Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV-FET Rating</td>
<td>220 V</td>
</tr>
<tr>
<td>Switching Frequency (kHz)</td>
<td>400/300</td>
</tr>
<tr>
<td>Max. Duty Cycle (DCmax)</td>
<td>75%</td>
</tr>
<tr>
<td>Control Method</td>
<td>PWM</td>
</tr>
<tr>
<td>Soft Start</td>
<td>Yes</td>
</tr>
<tr>
<td>Fully Integrated Current Sensing</td>
<td>Yes</td>
</tr>
<tr>
<td>Adjustable Current Limit</td>
<td>Yes</td>
</tr>
<tr>
<td>Hysteretic Thermal Shutdown</td>
<td>Yes</td>
</tr>
<tr>
<td>Power Limiting</td>
<td>Yes</td>
</tr>
<tr>
<td>Line UV Detection</td>
<td>Yes</td>
</tr>
<tr>
<td>Line OV Detection</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote ON/OFF</td>
<td>Yes</td>
</tr>
<tr>
<td>EcoSmart® Low Standby/No-load Power Consumption</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronizable to Lower External Clock Frequency</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote ON/OFF</td>
<td>Yes</td>
</tr>
</tbody>
</table>
DPA-Switch in PoE Applications

Power over Ethernet (PoE) is a method whereby power is transmitted to Ethernet-connected equipment (VoIP telephones, WLAN transmitters, security cameras) from the central switch. Power Integrations has developed circuits for highly cost-effective IEE802.3af compliant power supplies. Tested by the University of New Hampshire’s Interoperability Consortium (UNH-IOC), PI solutions have been shown to work with all available Power Sourcing Equipment (PSE). The results of the UNH-IOC testing are shown on the PI website.

Operation: PoE Powered Device (PD) fulfills three functions to work in conjunction with the sending end PSE: detection, classification and undervoltage lockout.

Detection Phase: The PSE checks the PD to determine if it is PoE-enabled. During the detection phase, the PSE applies a voltage ramp to the PD and looks for a characteristic impedance from the load (25 kΩ). If the signature impedance is detected, the PSE moves on to the classification phase. The signature identification voltage is a ramp voltage between 2.5 V and 10 V. A 24.9 kΩ resistor provides the correct signature impedance for detection.

Classification Phase: The PSE continues to ramp the voltage to the PD. Between 14.5 V and 20.5 V, the PD must draw a specified current to identify the device class. The classification current describes the amount of power the PD will require during normal operation. A table of classification current and operating PD power requirements is shown below.

<table>
<thead>
<tr>
<th>Class</th>
<th>Power (Min)</th>
<th>Power (Max)</th>
<th>I_CLASS (Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.44 W</td>
<td>12.95 W</td>
<td>4 mA</td>
</tr>
<tr>
<td>1</td>
<td>0.44 W</td>
<td>3.84 W</td>
<td>12 mA</td>
</tr>
<tr>
<td>2</td>
<td>3.84 W</td>
<td>6.49 W</td>
<td>20 mA</td>
</tr>
<tr>
<td>3</td>
<td>6.49 W</td>
<td>12.95 W</td>
<td>30 mA</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>Reserved</td>
<td>44 mA</td>
</tr>
</tbody>
</table>

Table 1. Classification Power Levels.

Turn-on Phase: The PSE continues to ramp the input voltage up to 30 V. When the undervoltage lockout (UVLO) circuit is released the PD is allowed to power up. A typical undervoltage lockout circuit is shown in the Figure above.

For additional information see Design Ideas DI-70 (www.powerint.com/PDFFiles/di70.pdf) & DI-88 (www.powerint.com/PDFFiles/di88.pdf), also Reference Design Kits DAK-68A and DAK-86.
Design Examples

Cost-Effective 6.6 W, 3.3 V Flyback DC-DC Converter (EP-86)

![Circuit Diagram of Cost-Effective 6.6 W, 3.3 V Flyback DC-DC Converter](PI-3806-061704)

15 W Multi-Output DC-DC Converter (DI-69)

![Circuit Diagram of 15 W Multi-Output DC-DC Converter](PI-3799-082404)

Visit www.powerint.com/appcircuits.htm for additional design examples.
Design Tools

Reference Design Kits (RDKs)
RDKs include a working prototype power supply, sample devices, unpopulated pcb, data sheet, comprehensive engineering report and other related documentation.

DAK-21A	30 W, DC-DC Forward Converter
DAK-68A	6.6 W, Class 0 PoE Converter
DAK-71A	6 W, DC-DC Converter
DAK-86	6.6 W, Multi-Class Programmable PoE Powered Device

Power Supply Design Software*
With PI Expert™ Suite, you’re only “mouse clicks” away from determining the key components in your next switching power supply design, including the best Power Integrations power IC and detailed instructions for building the transformer! It’s fast & easy... and best of all, FREE!

DPA-Switch Product and Design Collateral*

Data Sheet	DPA422-426	DPA-Switch Family Data Sheet
Application Note	AN-31	DPA-Switch DC-DC Forward Converter Design Guide
Design Ideas (2-page technical Circuit Document)		
DI-24	Application: Telecom (36-75 VDC Input): 30 W, 5 V Forward Converter	
DI-25	Application: Telecom (36-75 VDC Input): 30 W, 5 V Forward Converter (Sync. Rectification)	
DI-29	Application: Telecom (36-75 VDC Input): 25 W, 7 V Flyback Converter	
DI-31	Application: Telecom (36-75 VDC Input): 70 W, 5 V Forward Converter	
DI-37	Application: Telecom (36-75 VDC Input): 16.5 W, 3.3 V Forward Converter (Sync. Rectification)	
DI-40	Application: Telecom (36-75 VDC Input): 20 W, 2.5 V Forward Converter (Sync. Rectification)	
DI-51	Application: Telecom (36-75 VDC Input): 5 W, 5 V Flyback Converter	
DI-52	Application: Telecom (36-75 VDC Input): 60 W, 12 V Forward Converter (Sync. Rectification)	
DI-53	Application: Telecom (36-75 VDC Input): 50 W, 5 V / 3.3 V Forward Converter (Sync. Rectification)	
DI-56	Application: Telecom (36-75 VDC Input): 19.2 W, ±12 V Flyback Converter	
DI-57	Application: Telecom (36-75 VDC Input): 60 W, 12 V Flyback Converter	
DI-69	Application: VoIP Phone, 15 W, 5 V / 7.5 V / 20 V Forward Converter (Sync. Rectification)	
DI-70	Application: PoE VoIP Phone, 15 W, 5 V / 7.5 V / 20 V Forward Converter (Sync. Rectification)	
DI-88	Application: PoE PD Flyback Converter with Programmable Class	

* Downloadable from www.powerint.com
World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1 408-414-9200
Customer Service
Phone: +1-408-414-9665
Fax: +1-408-414-9765
Email: usasales@powerint.com
info@powerint.com

Worldwide Applications Hotline: +1-408-414-9660
Fax: +1-408-414-9760

On the Web
www.powerint.com

China (Shanghai)
Room 1601/1610, Tower 1,
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
Email: chinasales@powerint.com

China (Shenzhen)
Room A, B & C 4th Floor, Block C
2070 Shennan Zhong Rd.
Shenzhen, Guangdong, China 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
Email: chinasales@powerint.com

Germany
Ruckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
Email: eurosales@powerint.com

India
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
Email: indiasales@powerint.com

Italy
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
Email: eurosales@powerint.com

Japan
Kosei Dai-3 Bldg.,
2-12-11, Shin-Yokohama, Kohoku-ku,
Yokohama-shi, Kanagawa 222-0033
Phone: +81-45-471-1021
Fax: +81-45-471-3717
Email: japansales@powerint.com

Korea
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu
Seoul, 135-728, Korea
Phone: +82-2-2166-6610
Fax: +82-2-2166-6630
Email: koreasales@powerint.com

Singapore
51 Newton Road,
#15-08/10 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
Email: singaporesales@powerint.com

Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
Email: taiwansales@powerint.com

United Kingdom
1st Floor, St. James’s House
East Street, Farnham
Surrey, GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
Email: eurosales@powerint.com

©2008 Power Integrations. Power Integrations and the Power Integrations logo are registered trademarks of Power Integrations. All rights reserved.