Primary Winding (Section 1)
- Start on pin(s) 3 and wind 10 turns (x 1 filament) of item [5], in 1 layer(s) from left to right. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 2.
- Add 1 layer of tape, item [3], for insulation.

Bias Winding
- Start on pin(s) 5 and wind 5 turns (x 2 filament) of item [6]. Wind in same rotational direction as primary winding. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 4.
- Add 3 layers of tape, item [3], for insulation.

Secondary Winding
- Start on pin(s) 14,13 and wind 6 turns (x 1 filament) of item [7]. Spread the winding evenly across entire bobbin. Wind in same rotational direction as primary winding. Finish this winding on pin(s) 12,11.
- Add 1 layer of tape, item [3], for insulation.
- Start on pin(s) 9 and wind 6 turns (x 1 filament) of item [7]. Spread the winding evenly across entire bobbin. Wind in same rotational direction as primary winding. Finish this winding on pin(s) 8.
- Add 1 layer of tape, item [3], for insulation.

Electrical Diagram

Mechanical Diagram

Winding Instruction
- **Primary Winding (Section 2)**
- **Bias Winding**
- **Primary Winding (Section 1)**

KEY
- Mechanical start of winding (also denotes electrical phase)
- Direction of winding (clockwise)
Start on pin(s) 7 and wind 6 turns (x 1 filar) of item [7]. Spread the winding evenly across entire bobbin. Wind in same rotational direction as primary winding. Finish this winding on pin(s) 6.

Add 1 layer of tape, item [3], for insulation.

Start on pin(s) 12,11 and wind 6 turns (x 1 filar) of item [7]. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 10.

Add 3 layers of tape, item [3], for insulation.

Primary Winding (Section 2)

Start on pin(s) 2 and wind 19 turns (x 1 filar) of item [5]. in 1 layer(s) from left to right. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1.

Add 3 layers of tape, item [3], for insulation.

Core Assembly

Assemble and secure core halves. Item [1].

Varnish

Dip varnish uniformly in item [4]. Do not vacuum impregnate.

Comments

1. Pins 13 and 14 are electrically shorted to each other on the PCB via a copper trace.
2. Pins 11 and 12 are electrically shorted to each other on the PCB via a copper trace.
3. Use of a grounded flux-band around the core may improve the EMI performance.
4. For non margin wound transformers use triple insulated wire for all secondary windings.

Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Core: ETD29/16/10, NC-2H (Nicera) or Equivalent, gapped for ALG of 243 nH/T²</td>
</tr>
<tr>
<td>[3]</td>
<td>Barrier Tape: Polyester film [1 mil (25 µm) base thickness], 19.40 mm wide</td>
</tr>
<tr>
<td>[4]</td>
<td>Varnish</td>
</tr>
</tbody>
</table>

Electrical Test Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Strength, VAC</td>
<td>60 Hz 1 second, from pins 1,2,3,4,5 to pins 6,7,8,9,10,11,12,13,14.</td>
<td>3000</td>
</tr>
<tr>
<td>Nominal Primary Inductance, µH</td>
<td>Measured at 1 V pk-pk, typical switching frequency, between pin 1 to pin 3, with all other Windings open.</td>
<td>385</td>
</tr>
<tr>
<td>Tolerance, ±%</td>
<td>Tolerance of Primary Inductance</td>
<td>10.0</td>
</tr>
<tr>
<td>Maximum Primary Leakage, µH</td>
<td>Measured between Pin 1 to Pin 3, with all other Windings shorted.</td>
<td>9.61</td>
</tr>
</tbody>
</table>

Although the design of the software considered safety guidelines, it is the user's responsibility to ensure that the user's power supply design meets all applicable safety requirements of user's product.

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com.