Transformer Construction Parameters

Var	Value	Units	Description
Core Type	EI35		Core Type
Core Material	PC95		Core Material
Bobbin Reference	Generic, 7 pri. + 7 sec.		Bobbin Reference
Bobbin Orientation	Horizontal		Bobbin type
Primary Pins	7		Number of Primary pins used
Secondary Pins	7		Number of Secondary pins used
LP	1229	μН	Nominal Primary Inductance
ML	0.00	mm	Safety Margin on Left Width
MR	0.00	mm	Safety Margin on Right Width
LG	1.201	mm	Estimated Gap Length

Bias Variables

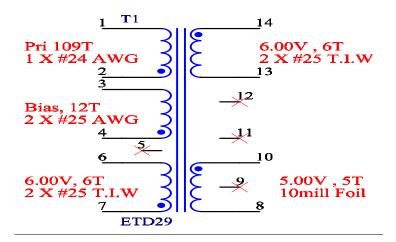
Var	Value	Units	Description
NB	12		Bias Winding Number of Turns
Wire Size	25	AWG	Wire size of Bias windings
Winding Type	Bifilar (x2)		Wire type of Bias windings
Layers	0.77		Bias Winding Layers
Start Pin(s)	4		Starting pin(s) for Bias winding
Termination Pin(s)	3		Termination pin(s) for Bias winding

Primary Winding Section 1

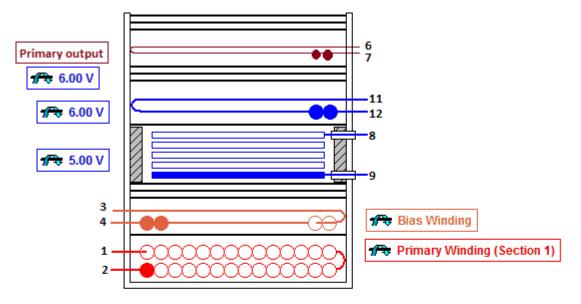
Var	Value	Units	Description
NP1	109		Number of Primary Winding Turns in the First Section of
			Primary
Wire Size	24	AWG	Primary Winding - Wire Size
Winding Type	Single (x1)		Primary Winding - Number of Parallel Wire Strands
L	1.98		Primary Winding - Number of Layers
Start Pin(s)	2		Starting pin(s) for first section of primary winding
Termination Pin(s)	1		Termination pin(s) for first section of primary winding

Primary Output 1:

Var	Value	Units	Description
VO	6.00	V	Typical Output Voltage
IO	1.00	A	Output Current
VOUT_ACTUAL	5.90	V	Actual Output Voltage
NS	6		Secondary Number of Turns
Wire Size	25	AWG	Wire size of secondary winding
Winding Type	Bifilar (x2)		Output winding number of parallel
winding Type	billiar (x2)		strands
L_S_OUT	0.08		Secondary Output Winding Layers
Start Pin(s)	7		Starting pin(s) for Output winding
Termination Pin(s)	6		Termination pin(s) for Output winding


Output 1

Var	Value	Units	Description
VO	5.00	V	Typical Output Voltage
IO	10.00	A	Output Current
VOUT_ACTUAL	5.00	V	Actual Output Voltage
NS	5		Secondary Number of Turns
Foil Thickness	10		Wire size of secondary winding
Winding Type	Foil		Output winding number of parallel strands
L_S_OUT	5.00		Secondary Output Winding Layers
Start Pin(s)	9		Starting pin(s) for Output winding
Termination Pin(s)	8		Termination pin(s) for Output winding


Output 2

Var	Value	Units	Description
VO	6.00	V	Typical Output Voltage
IO	1.00	A	Output Current
VOUT_ACTUAL	7.00	V	Actual Output Voltage
NS	6		Secondary Number of Turns
Wire Size	25	AWG	Wire size of secondary winding (Manual Overwrite)
Winding Type	Bifilar (x2)		Output winding number of parallel strands (Manual Overwrite)
L_S_OUT	0.08		Secondary Output Winding Layers
Start Pin(s)	12		Starting pin(s) for Output winding
Termination Pin(s)	11		Termination pin(s) for Output winding

ELECTRICAL DIAGRAM:

MECHANICAL DIAGRAM:

Winding Instruction

Start on pin(s) 2 and wind 109 turns (x 1 filar) of item [5]. from left to right. Winding direction is clockwise. At the end of 1st layer, continue to wind the next layer from right to left. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1.

Add 1 layer of tape, item [3], for insulation.

Bias Winding

Start on pin(s) 4 and wind 12 turns (x 2 filar) of item of item [6]. Winding direction is clockwise. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 3

Add 3 layers of tape, item [3], for insulation.

Secondary Winding

Use 3 mm margin (item [8]) on the left side and 3 mm margin on the right side (to meet safety). Start on pin(s) 9 and wind 5 turns of item [7]. Winding direction is clockwise. Finish this winding on pin(s) 8.

Add 1 layer of tape, item [3], for insulation.

Start on pin(s) 12 and wind 6 turns (x 2 filar) of item [9]. Spread the winding evenly across entire bobbin. Winding direction is clockwise. Finish this winding on pin(s) 11.

Add 3 layers of tape, item [3], for insulation.

Primary output

Use 3 mm margin (item [8]) on the left side and 3 mm margin on the right side (to meet safety .Start on pin 7 and wind 6 turns (x2filars) of item [9], Spread the winding evenly across entire bobbin , winding direction is clockwise, Finish this winding on pin 6.

Add 3 layers of tape, item [3], for insulation.

Comments

1. Use of a grounded flux-band around the core may improve the EMI performance.

2. For non margin wound transformers use triple insulated wire for all secondary windings.

Materials

Item	Description
[1]	Core: EI35, PC95, gapped for ALG of 103 nH/T ²
[2]	Bobbin: Generic, 7 pri. + 7 sec.
[3]	Barrier Tape: Polyester film [1 mil (25 μm) base thickness], 15.70 mm wide
[4]	Varnish
[5]	Magnet Wire: 24 AWG, Solderable Double Coated
[6]	Magnet Wire: 25 AWG, Solderable Double Coated
[7]	Copper Foil: 10 mil thick, 9.70 mm wide, covered with 1 layer of lapped tape. Terminations to foil: 2 x 23 AWG magnet wire with sleeving
[8]	Tape: Polyester web 3 mm wide
[9]	Triple Insulated Wire: 25 AWG