HiperTFS2_Two-switch_Forward_01 2919; Rev.2.2; Copyright Power Integrations 2019	INPUT	INFO	OUTPUT	UNIT	Two-switch Forward Transformer Design Spreadsheet
Hiper-TFS MAIN OUTPUT (TWO-SWITCH FORWARD STAGE)					
OUTPUT VOLTAGE AND CURRENT					Design Title
VMAIN	14.00		14.00	V	Main output voltage
IMAIN	8.00		8.00	A	Main output current
VOUT2	0.00		0.00	V	Output2 voltage - enter zero or leave blank if none
IOUT2	0.00		0.00	A	Output2 current - enter zero or leave blank if none
Post Regulated Output					
Post Regulator	NONE		NONE		Select post regulator from Mag-Amp, Buck, or NONE
V_SOURCE	NONE		NONE	V	Select source of input voltage for post regulator. Enter None if Post regulator not used.
VOUT3			0.00	V	Enter post regulator output voltage. Enter zero or leave blank if none
IOUT3			0.00	A	Enter post regulator output current. Enter zero or leave blank if none
$n_{2} P R$			1.00		Enter post regulator efficiency (Buck only)
Coupled Inductor (Low Power) derived output					
VOUT4	0.00		0.00	V	Output choke derived (low power) output voltage (typically -12 V)
IOUT4	0.00		0.00	A	Output choke derived (low power) output current
System Power					
POUT(Main)			112.0	W	Total output power (Main converter)
POUT_PEAK(Main)	112.0		112.0	W	Peak Output power (Main converter). If there is no peak power requirement enter value equal to continuous power
POUT(Standby)			1.2	W	Continuous output power from Standby power supply
POUT_PEAK(Standby)			1.2	W	Peak output power from Standby section below
POUT(System Total)			113.2	W	Total system continuous output power
POUT_PEAK(System Total)			113.2	W	Total system peak output power
INPUT VOLTAGE AND UV/OV					
CIN_MIN			122	$u F$	Minimum Input Capacitance to meet holdup time. To increase CMIN, increase T_HOLDUP
T_HOLDUP			20.0	$m s$	Holdup time
CIN_ACTUAL	330		330	$u F$	Select Actual Bulk Capacitor
CIN_ESR	0.20		0.20	Ω	Bulk capacitor ESR
IRMS_CIN			0.70	A	RMS current through bulk capacitor
PLOSS_CIN			0.10	W	Bulk capacitor ESR losses
VMIN	230		230	V	Minimum input voltage to guarantee output regulation at full load
VNOM	310		310	V	Nominal input voltage
VMAX	350	Warning	350	V	!!!! Regulation lost. Change VMAX, or reduce DVNOM_GOAL < DMAX_VNOM
$R R$			2.82	$M \Omega$	R pin resistor

$R L$	2.82		2.82	$M \Omega$	Line Sense resistor value (L-pin) - goal seek (VUV OFF) for std 1\% resistor series
UV and OV thresholds					
VUV OFF (min)			130	V	Minimum undervoltage On \rightarrow Off threshold
VUV OFF (max)			161	V	Maximum undervoltage On \rightarrow Off threshold
VUV ON (min)			212	V	Minimum undervoltage Off \rightarrow On threshold
VUV ON (max)			235	V	Maximum undervoltage Off \rightarrow On threshold
VOV OFF (min)			333	V	Minimum overvoltage On \rightarrow Off threshold
VOV ON (max)			460	V	Maximum overvoltage Off \rightarrow On threshold
Clamp Section					
Clamp Selection	CLAMP TO GND				Select either "CLAMP TO RAIL" (default) or "CLAMP TO GND"
VCLAMP	530		530	V	Asymmetric Clamp Zener Voltage
VDSOP			530	V	Estimated Maximum Hiper-TFS Drain voltage (at VOVOFF_MAX)
DUTY CYCLE VALUES (REGULATION)					
DVMIN			0.66		Duty cycle at minimum DC input voltage
DVNOM_GOAL	0.49		0.49		Target duty cycle at nominal input voltage (VNOM)
DVNOM			0.49		Duty cycle at nominal DC input voltage
DVMAX			0.43		Duty cycle at maximum DC input voltage
DOVOFF MIN			0.45		Duty cycle at over-voltage DC input voltage (DOVOFF_MIN)
Maximum Duty Cycle values					
DMAX_UVOFF_MIN			0.78		Max duty cycle clamp at VUVOFF_MIN
DMAX_VMIN			0.67		Max duty clamp cycle at VMIN
DMAX_VNOM		Warning	0.50		!!!! Less than 5\% margin for transients, increase RL, VCLAMP or decrease DVNOM_GOAL
DMAX_VMAX		Warning	0.44		!!!! Less than 4\% margin for transients, increase RL, VCLAMP or decrease DVNOM_GOAL
DMAX_OVOFFMIN			0.46		Max duty clamp cycle at VOVOFF_MAX
DEVICE VARIABLES					
Device	TFS7704		TFS7704		Selected HiperTFS device
Select Frequency mode	132		132	kHz	Select Frequency mode.
ILIMIT_MIN			3.35	A	Device current limit (Minimum)
ILIMIT_TYP			3.6	A	Device current limit (Typical)
ILIMIT_MAX			3.85	A	Device current limit (Maximum)
fSMIN			124,000	Hz	Device switching frequency (Minimum)
fS			132,000	Hz	Device switching frequency (Typical)
fSMAX			140,000	Hz	Device switching frequency (Maximum)
KI	1.0		1.0		Select Current limit factor (KI=1.0 for default ILIMIT, or select $K I=0.9$ or $K I=0.7$)
$R(F B)$			232	$k \Omega$	Feedback (FB) pin resistor
ILIMIT SELECT			3.35	A	Selected current limit
RDS(ON)			4.20	Ω	Sum of Rds(on) of high and low-side MOSFETs at $100^{\circ} \mathrm{C}$

$V D S$	3.00	3.00	V	HiperTFS full-load average on-state Drain to Source Voltage (sum for both MOSFETs)
Main MOSFET losses				
V_Coss upper FET	200	200	V	Voltage across upper MOSFET at turn on, enter actual value to calculate switching losses
MOSFET SWITCHING LOSS		0.8	W	Sum of switching losses in both MOSFETs
MOSFET CONDUCTION LOSS		2.7	W	Sum of conduction losses in both MOSFETs
TOTAL_MOSFET_LOSS		3.5	W	Total loss in MOSFET (upper + lower)
Detailed MOSFET Loss Information				
PCOND_LOWER		1.8	W	Conduction losses in lower MOSFET
PCOND_UPPER		0.9	W	Conduction losses in upper MOSFET
LOWERFET_SW_LOSS		0.5	W	Switching loss in upper MOSFET
UPPERFET_SW_LOSS		0.3	W	Switching loss in lower MOSFET
MAIN TRANSFORMER				
Transformer core selection				
Core Type	ETD34	ETD34		Selected core type
$A E$	0.97	0.97	$\mathrm{cm}^{\wedge} 2$	Core effective cross sectional area
LE	7.86	7.86	cm	Core Effective Path Length
AL	3300	3300	$n H / T^{\wedge} 2$	Ungapped Core Effective Inductance
BW	20.90	20.90	mm	Bobbin Physical Winding Width
B_HT	5.38	5.38	mm	Height of bobbin (to calculate fit)
B_WA		1.12	$\mathrm{cm}^{\wedge} 2$	Bobbin Winding area
M	4.50	4.50	mm	Bobbin safety margin tape width (2 * $M=$ Total Margin)
Primary Inductance				
LMAG_MAX		9.09	mH	Max LMAG to hit min zero-load resonant frequency, calculated from C_PRI. Do not exceed.
LMAG	2.94	2.94	mH	Actual magnetizing inductance (measured) of transformer
GAP		0.11	mm	gap calculated from LMAG
FRES_SYS	211	211	kHz	Total XFMR + system resonant frequency; enter value along with actual LMAG
C_SYS		194	$p F$	Estimated total XFMR + Sys parasitic cap reflected to primary, calc'd from LMAG and FRES
Diode Vf Selection				
VDMAIN	0.24	0.24	V	Main output diodes forward voltage drop affects VOUT2_ACTUAL (if present)
VDOUT2	0.00	0.00	V	Output 2 diodes forward voltage drop - affects VOUT2_ACTUAL
VDOUT3	0.00	0.00	V	Output 3 diodes forward voltage drop
$V D B$	0.70	0.70	V	Bias diode forward voltage drop
Turns				
NMAIN	6	6	turns	Main rounded turns
NS2		N/A	turns	2nd output number of turns
VOUT2 ACTUAL		0.0	V	Approximate Output2 voltage with NS2 $=0$ turns (AC stacked secondary). VDMAIN and VDOUT2 affect this.

$N P$			59	turns	Primary rounded turns. NMAIN and DVNOM_GOAL affect this.
HI SIDE BIAS WINDING (optional)	No		No		Can be used to eliminate pulse skipping at light load 132 kHz when zero transformer gap; better efficiency than adding gap
VBIAS	0.0			V	DC bias voltage from main transformer optional aux winding
NBIAS	0			turns	VBias rounded turns
VBIAS_ACTUAL				V	Vbias not used
Flux calculations					
BM_MAX			1223	Gauss	Peak positive flux density at nominal switching frequency
BM PK-PK			1854	Gauss	Peak-peak flux density at nominal conditions. Used to calculate core losses
$B P _M A X$			1346	Gauss	Max transient positive flux density at Vmax (limited by DVMAX clamp)
$B P$ PK-PK			2039	Gauss	Max transient peak-peak flux density at Vmax (limited by DVMAX clamp)
TRANSFORMER LOSSES AND FIT ESTIMATE					
Core loss					
Core material	PC44		PC44		Core material
core_loss_multiplier	23.97		23.97		Core Loss multiplier
f_coeff	1.56		1.56		Core Loss Frequency co-efficient
BAC_coeff	2.90		2.90		Core Loss AC flux density co-efficient
specific core loss	161		49	$m W / c c$	Core loss per unit volume
core volume	7.63		7.63	$\mathrm{cm}^{\wedge} 3$	Volume of core
core loss			0.38	W	Core loss
Primary Winding Fit and losses					
L	2		2	layers	Transformer primary layers (split primary recommended)
OD_PRI	0.71		0.71	mm	Primary winding diameter
FILAR_PRI	1		1	strands	Number of parallel strands of wire (primary)
MLT_PRI	6.00		6.00	cm	Mean length per turn
DCR_PRI			198	$m \Omega$	DC resistance of primary winding
PCOND_PRI			0.13	W	Conduction loss in primary winding
FILL_PRI			21	\%	Fill factor (primary only)
Secondary Winding 1 (lower winding when AC stacked)					
VOUT			14.0	V	Specified voltage for this winding
NS1			6.0	turns	Number of turns
IRMS_SEC1			6.1	A	RMS current through winding
Foil/Wire	WIRE		WIRE	foil/wire	Select FOIL or WIRE for winding
OD/Thickness	0.71		0.71	mm	Wire diameter or Foil thickness
FILAR_SEC1	3		3	strands	Number of parallel strands (wire selection only)
SEC1_WIDTH		Warning	N/A	mm	Foil Width (Applicable if FOIL winding used)
SEC1_MLT	5.40		5.40	cm	Mean length per turn
DCR_SEC1			6.03	$m \Omega$	DC resistance of secondary winding
PCOND_SEC1			0.22	W	Conduction loss in secondary winding

FILL_SEC1		6	\%	Fill factor (secondary 1 only)
Secondary Winding 2 (upper winding when AC stacked)				
VOUT		0.0	V	Specified voltage for this winding
NS2		0.0	turns	Number of turns
IRMS_SEC2		0.0	A	RMS current through winding
Foil/Wire	FOIL	FOIL	foil/wire	Select FOIL or WIRE for winding
OD/Thickness		0.13	mm	Wire diameter or Foil thickness
FILAR_SEC2		N/A	strands	Number of parallel strands (wire selection only)
SEC2_WIDTH		18.00	$m m$	Foil Width (Applicable if FOIL winding used)
SEC2_MLT		6.00	cm	Mean length per turn
DCR_SEC2		0.00	$m \Omega$	DC resistance of secondary winding
PCOND_SEC2		0.00	W	Conduction loss in secondary winding
FILL_SEC2		0	\%	Fill factor (secondary 1 only)
Fill Factor and losses of main transformer				
FILL_TOTAL		27	\%	Total transformer fill factor
TOTAL_CU_LOSS		0.35	W	Total copper losses in transformer
TOTAL_CORE_LOSS		0.38	W	Total core losses in transformer
TOTAL_TRF_LOSS		0.73	W	Total losses in transformer
CURRENT WAVESHAPE PARAMETERS				
IP		1.27	A	Peak primary current at Full Load, VNOM
IP_PEAK		1.27	A	Peak primary current at Peak Load and VNOM
IPRMS(NOM)		0.81	A	Primary RMS current at Full Load, VNOM
IMAG		0.38	A	Peak magnetizing current at VMIN
OUTPUT INDUCTOR				
KDI_ACTUAL		0.19		Current ripple factor of combined Main and Output2 outputs
Turns				
POWDER TURNS MULTIPLIER	5.00	5.00		Powder only. Multiplier factor between main number of turns in transformer and inductor (default value $=3$ for 66 kHz or 4 for 132 kHz).
NMAIN_INDUCTOR		30.0	turns	Main output inductor number of turns - affected by powder turns multiplier or ferrite Target BM
NOUT2_INDUCTOR			turns	Output 2 inductor number of turns
NOUT4_INDUCTOR		N/A	turns	Output 4 number of turns (low power)
Inductance and flux				
LMAIN_ACTUAL		41.0	$u \mathrm{H}$	Estimated inductance of main output at full load
LOUT_2		0.0	$u \mathrm{H}$	Estimated inductance of auxiliary output at full load
BM_IND		3705	gauss	DC component of flux density
BAC_IND		339	gauss	AC component of flux density
Core Selection				
Core Type	Kool Mu 75u	$\begin{aligned} & \text { Kool Mu } \\ & 75 u \end{aligned}$		Select core type

ENTER Hiper-TFS STANDBY VARIABLES					
Select Current Limit				Low current Limit	
				Enter "LOW" for low current limit, "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications)	
ILIM_MIN					
ILIM_TYP					Minimum Current Limit

CURRENT WAVEFORM SHAPE PARAMETERS					
DMAX_SB			0.05		Duty Ratio at full load, minimum primary inductance and minimum input voltage
IAVG			0.01	A	Average Primary Current
$I P_{-} S B$			0.47	A	Minimum Peak Primary Current
IR_SB			0.47	A	Primary Ripple Current
IRMS_SB			0.07	A	Primary RMS Current
TRANSFORMER PRIMARY DESIGN PARAMETERS					
LP_SB			96	$u H$	Typical Primary Inductance. +/- 10\% to ensure a minimum primary inductance of 87 uH
LP_TOLERANCE	10.0		10.0	\%	Primary inductance tolerance
NP_SB			28	turns	Primary Winding Number of Turns
ALG			119	$n H / T^{\wedge} 2$	Gapped Core Effective Inductance
$B M$			906	Gauss	Maximum Operating Flux Density, BM<3000 is recommended
$B A C$			453	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur			1496		Relative Permeability of Ungapped Core
LG			0.19	mm	Gap Length ($L g>0.1 \mathrm{~mm}$)
BWE			8	mm	Effective Bobbin Width
$O D$	0.35		0.35	mm	Maximum Primary Wire Diameter including insulation
INS			0.06	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
DIA			0.29	mm	Bare conductor diameter
AWG			29	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
CM			128	Cmils	Bare conductor effective area in circular mils
CMA		Info	1776	Cmils/Amp	CAN DECREASE CMA < 500 (decrease L (primary layers), increase NS, use smaller Core)
TRANSFORMER SECONDARY DESIGN PARAMETERS					
Lumped parameters					
ISP			3.3	A	Peak Secondary Current
ISRMS			0.47	A	Secondary RMS Current
IRIPPLE			0.47	A	Output Capacitor RMS Ripple Current
CMS			94	Cmils	Secondary Bare Conductor minimum circular mils
AWGS			30	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
VOLTAGE STRESS PARAMETERS					
VDRAIN			678	V	Maximum Drain Voltage Estimate (Assumes 20\% zener clamp tolerance and an additional 10\% temperature tolerance)
PIVS			71	V	Output Rectifier Maximum Peak Inverse Voltage
Forward DC-DC System efficiency					

P_MOSFET_MAIN_TOTAL	3.50	w	HiperTFS losses
P_XFMR_LOSS	0.7	W	Main transformer losses
P_MAIN_OUT_DIODE	1.9	W	Output diode losses
P_CIN_ESR	0.10	W	Bulk capacitor ESR losses
P_IND_MAIN	1.2	W	Output choke losses
OTHER_LOSSES	0.09	w	Other losses (includes PCB traces, clamp loss, magamp loss etc.)
EFFICIENCY_STDBY	80.0\%		Estimated efficiency of flyback power supply
EFFICIENCY_MAIN	93.5\%		Estimated Forward efficiency
EFFICIENCY_SYSTEM	93.3\%		Estimated System efficiency (forward + standby)
Other Losses			
PCB trace losses	0.09	w	Estimated PCB trace losses
Detailed Mosfet Loss Inform			
P_MAIN_COND_LOWER	1.82	w	Conduction losses in lower MOSFET
P_MAIN_COND_UPPER	0.91	W	Conduction losses in upper MOSFET
COSS_LOWER	43	pF	COSS for low side MOSFET
COSS_UPPER	110	pF	COSS for high side MOSFET
P_MAIN_LOWER_SW	0.48	W	Switching loss in upper MOSFET
P_MAIN_UPPER_SW	0.29	W	Switching loss in lower MOSFET
P_STANDBY_COND	0.03	W	Conduction losses in standby MOSFET at minimum input voltage

