HiperLCS_042413; Rev.1.3; Copyright Power Integrations 2013	INPUTS	INFO	OUTPUTS	UNITS	HiperLCS_042413_Rev1-3.xls; HiperLCS Half-Bridge, Continuous mode LLC Resonant Converter Design Spreadsheet
Enter Input Parameters					Design Title
Vbulk_nom	220		220		Nominal LLC input voltage Brownout threshold voltage. HiperLCS will shut down if voltage drops below this
Vbrownout			162		value. Allowable value is between 65% and 76% of Vbulk_nom. Set to 65% for max holdup time
Vbrownin VOV_shut			204 269		Startup threshold on bulk capacitor OV protection on bulk voltage
VOV_restart			259		Restart voltage after OV protection. !!! Warning. CBULK is too small. Recommended value should be greater than 0.7
CBULK tHOLDUP	280.00	Warning	280		uF/W Bulk capacitor hold up time
Enter LLC (secondary) outputs					The spreadsheet assumes AC stacking of the secondaries
VO1 IO1	18.00 10.00		18.0 10.0		Main Output Voltage. Spreadsheet assumes that this is the regulated output Main output maximum current
VD1	10.00		0.50		Forward voltage of diode in Main output
PO1 VO2	5.00		180 5.0		Output Power from first LLC output Second Output Voltage
102	5.00 0.50		0.5		Second Output voltage
VD2			0.70		Forward voltage of diode used in second output
PO2 P LLC			2.50 183		Output Power from second LLC output Specified LLC output power
			105		
LCS Device Selection Device	LCS705	Warning	LCS705		III Warning. Device may be too large. Select smaller device
RDS-ON (MAX)	_00100			ohms	RDS-ON (max) of selected device
Coss			468		Equivalent Coss of selected device
Cpri Pcond loss			40	pF W	Stray Capacitance at transformer primary Conduction loss at nominal line and full load
Tmax-hs				deg C	Maximum heatsink temperature
Theta J-HS					Thermal resistance junction to heatsink (with grease and no insulator)
Expected Junction temperature Ta max	80.00			deg C deg C	Expectd Junction temperature
Theta HS-A	80.00			deg C deg C/W	Expected max ambient temperature Required thermal resistance heatsink to ambient
LLC Resonant Parameter and Transformer Ca	alculations	s (generates r	ed curve)	1	
Vres_target	220.00		220	V	Desired Input voltage at which power train operates at resonance. If greater than Vbulk nom, LLC operates below resonance at VBULK.
Po			188	W	LLC output power including diode loss
Vo			18.50	V	Main Output voltage (includes diode drop) for calculating Nsec and turns ratio
f_target	100.00		100	kHz	Desired switching frequency at Vbulk_nom. 66 kHz to 300 kHz, recommended 180-250 kHz
Lpar			183	uH	Parallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for non-integrated low-leakage transformer)
					Primary open circuit inductance for integrated transformer; for low-leakage
Lpri	250.00		250	uH	transformer it is sum of primary inductance and series inductor. If left blank, auto-calculation shows value necessary for slight loss of ZVS at ~80% of Vnom
Lres	67.00		67.0	uH	Series inductance or primary leakage inductance of integrated transformer; if left blank auto-calculation is for K=4
Kratio			2.7	r	Ratio of Lpar to Lres. Maintain value of K such that 2.1 < K < 11. Preferred Lres is such that K<7.
Cres	33.00		33.0	nF	Series resonant capacitor. Red background cells produce red graph. If Lpar, Lres, Cres, and n_RATIO_red_graph are left blank, they will be auto-calculated
Lsec			5.407	иН	Secondary side inductance of one phase of main output; measure and enter value,
					or adjust value until f_predicted matches what is measured ; Leakage distribution factor (primary to secondary). >50% signifies most of the
m			50	%	leakage is in primary side. Gap physically under secondary yields >50%, requiring fewer primary turns.
n_eq			5.82		Turns ratio of LLC equivalent circuit ideal transformer Primary number of turns; if input is blank, default value is auto-calculation so that
Npri	34.0		34.0		f_predicted = f_target and m=50%
Nsec	5.0		5.0		Secondary number of turns (each phase of Main output). Default value is estimate to maintain BAC<=200 mT, using selected core (below)
f_predicted			107	kHz	Expected frequency at nominal input voltage and full load; Heavily influenced by n_eq and primary turns
f_res	ļ		107	kHz	Series resonant frequency (defined by series inductance Lres and C)
f_brownout			82	kHz	Expected switching frequency at Vbrownout, full load. Set HiperLCS minimum frequency to this value.
f_par	1		55	kHz	Parallel resonant frequency (defined by Lpar + Lres and C)
f_inversion	Ì			kHz	LLC full load gain inversion frequency. Operation below this frequency results in
Vinversion	 		158		operation in gain inversion region. LLC full load gain inversion point input voltage
Vres_expected			215		Expected value of input voltage at which LLC operates at resonance.
RMS Currents and Voltages					
IRMS_LLC_Primary			2.17		Primary winding RMS current at full load, Vbulk_nom and f_predicted
Winding 1 (Lower secondary Voltage) RMS current Lower Secondary Voltage Capacitor RMS current			8.2		Winding 1 (Lower secondary Voltage) RMS current Lower Secondary Voltage Capacitor RMS current
Winding 2 (Higher secondary Voltage Capacitor RMS current	1		4.6 0.4		Lower Secondary Voltage Capacitor RMS current Winding 2 (Higher secondary Voltage) RMS current
Higher Secondary Voltage Capacitor RMS current	ļ		0.2	A	Higher Secondary Voltage Capacitor RMS current
Cres_Vrms			98	V	Resonant capacitor AC RMS Voltage at full load and nominal input voltage
Virtual Transformer Trial - (generates blue cu	rve)				
(Jensialeo Mae ou	-1	1		í.	1

New primary turns			34.0)	Trial transformer primary turns; default value is from resonant section
New secondary turns			5.0		Trial transformer secondary turns; default value is from resonant section
New Lpri			250	uH	Trial transformer open circuit inductance; default value is from resonant section
New Cres			33.0	nF	Trial value of series capacitor (if left blank calculated value chosen so f_res same as in main resonant section above
New estimated Lres			67.0		Trial transformer estimated Lres
New estimated Lpar			183		Estimated value of Lpar for trial transformer
New estimated Lsec New Kratio	i I		5.407 2.7		Estimated value of secondary leakage inductance Ratio of Lpar to Lres for trial transformer
New equivalent circuit transformer turns ratio			5.82		Estimated effective transformer turns ratio
V powertrain inversion new	L		158		Input voltage at LLC full load gain inversion point
f_res_trial				′kHz ′kHz	New Series resonant frequency
f_predicted_trial	j				New nominal operating frequency Primary winding RMS current at full load and nominal input voltage (Vbulk) and
IRMS_LLC_Primary	L		2.17		f_predicted_trial
Winding 1 (Lower secondary Voltage) RMS current			8.3		RMS current through Output 1 winding, assuming half sinusoidal waveshape
Lower Secondary Voltage Capacitor RMS current	i		5.0		Lower Secondary Voltage Capacitor RMS current RMS current through Output 2 winding; Output 1 winding is AC stacked on top of
Winding 2 (Higher secondary Voltage) RMS current			7.9	A	Output 2 winding
Higher Secondary Voltage Capacitor RMS current			0.3		Higher Secondary Voltage Capacitor RMS current
Vres_expected_trial			215	V	Expected value of input voltage at which LLC operates at resonance.
Transformer Core Calculations (Calculates Fr	om Reson	ant Paramete	er Section)		
Transformer Core	Auto		EER28L		Transformer Core
	0.97			cm^2 cm^3	Enter transformer core cross-sectional area
	7.63 120.00			mm^2	Enter the volume of core Area of window
	20.90			mm	Total Width of Bobbin
Loss density			200.0) mW/cm^3	Enter the loss per unit volume at the switching frequency and BAC (Units same as
MLT)cm	kW/m^3) Mean length per turn
Nchambers				2	Number of Bobbin chambers
Wsep)mm	Winding separator distance (will result in loss of winding area)
Ploss	1		1.5		Estimated core loss
Bpkfmin BAC				mT mT	First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)
Primary Winding	<u> </u>				
Npri Primary gauge	42		34.0	AWG	Number of primary turns; determined in LLC resonant section Individual wire strand gauge used for primary winding
Equivalent Primary Metric Wire gauge			0.060		Equivalent diameter of wire in metric units
Primary litz strands	100		100)	Number of strands in Litz wire; for non-litz primary winding, set to 1
Primary Winding Allocation Factor			50	%	Primary window allocation factor - percentage of winding space allocated to primary
AW_P			51	mm^2	Winding window area for primary
Fill Factor			31%		% Fill factor for primary winding (typical max fill is 60%)
Resistivity_25 C_Primary					Resistivity in milli-ohms per meter
Primary DCR 25 C Primary DCR 100 C	<u> </u>			m-ohm m-ohm	Estimated resistance at 25 C Estimated resistance at 100 C (approximately 33% higher than at 25 C)
Primary RMS current			2.17		Measured RMS current through the primary winding
ACR_Trf_Primary			133.07	m-ohm	Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to
Primary copper loss			0.63		approximate 100 C winding temperature Total primary winding copper loss at 85 C
Primary Layers			2.95		Number of layers in primary Winding
Secondary Winding 1 (Lower secondary volta	ige OR Sin	gle output)			Note - Power loss calculations are for each winding half of secondary
Output Voltage Sec 1 Turns	ł		5.00 2.00		Output Voltage (assumes AC stacked windings) Secondary winding turns (each phase)
Sec 1 RMS current (total, AC+DC)			8.2		RMS current through Output 1 winding, assuming half sinusoidal waveshape
Winding current (DC component)			5.25		DC component of winding current
Winding current (AC RMS component)	10		6.28		AC component of winding current
Sec 1 Wire gauge Equivalent secondary 1 Metric Wire gauge	40		40 0.080	AWG	Individual wire strand gauge used for secondary winding Equivalent diameter of wire in metric units
	250		250		Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1
Resistivity_25 C_sec1				m-ohm/m	Resistivity in milli-ohms per meter
DCR_25C_Sec1				m-ohm	Estimated resistance per phase at 25 C (for reference)
DCR_100C_Sec1 DCR_Ploss_Sec1	i l		1.58	m-ohm W	Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C) Estimated Power loss due to DC resistance (both secondary phases)
			0.00		Measured AC resistance per phase (at 100 kHz, room temperature), multiply by
ACR_Sec1			1.59	m-ohm	1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C
ACR_Ploss_Sec1			0.13	w	Estimated AC copper loss (both secondary phases)
Total winding 1 Copper Losses			0.47		Total (AC + DC) winding copper loss for both secondary phases
Capacitor RMS current			0.2		Output capacitor RMS current
Co1 Capacitor ripple voltage	220.00		220.0 0.1		Secondary 1 output capacitor Peak to Peak ripple voltage on secondary 1 output capacitor
					Schottky losses are a stronger function of load DC current. Sync Rectifier losses
Output rectifier RMS Current			0.4		are a function of RMS current
Secondary 1 Layers			1.10		Number of layers in secondary 1 Winding
Secondary Winding 2 (Higher secondary volta Output Voltage	ige)		18.00	N/	Note - Power loss calculations are for each winding half of secondary Output Voltage (assumes AC stacked windings)
Sec 2 Turns			4.00		Secondary winding turns (each phase) AC stacked on top of secondary winding 1
Sec 2 RMS current (total, AC+DC)			7.8		RMS current through Output 2 winding; Output 1 winding is AC stacked on top of
			5.0		Output 2 winding
Winding current (DC component) Winding current (AC RMS component)			6.0		DC component of winding current AC component of winding current
Sec 2 Wire gauge	40		40	AWG	Individual wire strand gauge used for secondary winding
Equivalent secondary 2 Metric Wire gauge	250		0.080	mm	Equivalent diameter of wire in metric units
Sec 2 litz strands	250		250	I	Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1

Resistivity_25 C_sec2			14.92	m-ohm/m	Resistivity in milli-ohms per meter
Transformer Secondary MLT			3.95		Mean length per turn
DCR_25C_Sec2			2.36	m-ohm	Estimated resistance per phase at 25 C (for reference)
DCR_100C_Sec2			3.16	m-ohm	Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)
DCR_Ploss_Sec1			0.00	W	Estimated Power loss due to DC resistance (both secondary halves)
ACR_Sec2			3.19	m-ohm	Measured AC resistance per phase (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C
ACR_Ploss_Sec2			0.23	w	Estimated AC copper loss (both secondary halves)
Total winding 2 Copper Losses			0.23		Total (AC + DC) winding copper loss for both secondary halves
Capacitor RMS current			4.6		Output capacitor RMS current
	670.00		670.0		Secondary 2 output capacitor
Capacitor ripple voltage			0.1		Peak to Peak ripple voltage on secondary 1 output capacitor Schottky losses are a stronger function of load DC current. Sync Rectifier losses
Output rectifier RMS Current			7.8	А	are a function of RMS current
Secondary 2 Layers			1.10		Number of layers in secondary 2 Winding
Transformer Loss Calculations					Does not include fringing flux loss from gap
Primary copper loss (from Primary section)			0.63		Total primary winding copper loss at 85 C
Secondary copper Loss			0.70		Total copper loss in secondary winding
Transformer total copper loss AW_S				vv mm^2	Total copper loss in transformer (primary + secondary) Area of window for secondary winding
Secondary Fill Factor			49%		% Fill factor for secondary windings; typical max fill is 60% for served and 75% for
			4370	70	unserved Litz
Signal Pins Resistor Values					Minimum fragmanau when ante-source is suit off. Only the suit of the state of the s
f_min			82	kHz	Minimum frequency when optocoupler is cut-off. Only change this variable based on actual bench measurements
Dead Time	500		500	ns	Dead time
Burst Mode	1		1		Select Burst Mode: 1, 2, and 3 have hysteresis and have different frequency thresholds
					Inresnolds Max internal clock frequency, dependent on dead-time setting. Is also start-up
t_max			542	kHz	frequency
f_burst_start			236	kHz	Lower threshold frequency of burst mode, provides hysteresis. This is switching
					frequency at restart after a bursting off-period Upper threshold frequency of burst mode; This is switching frequency at which a
f_burst_stop			270	kHz	bursting off-period stops
DT/BF pin upper divider resistor			11.78	k-ohms	Resistor from DT/BF pin to VREF pin
DT/BF pin lower divider resistor			224	k-ohms	Resistor from DT/BF pin to G pin
Rstart			10.24	k-ohms	Start-up resistor - resistor in series with soft-start capacitor; equivalent resistance from FB to VREF pins at startup. Use default value unless additional start-up delay
(Start			10.24	K-OHHIS	is desired.
Start up delay			0.0	ms	Start-up delay; delay before switching begins. Reduce R_START to increase delay
Dímin			02.0	k ahma	Resistor from VREF pin to FB pin, to set min operating frequency; This resistor
Rfmin			92.9	k-ohms	plus Rstart determine f_MIN. Includes 7% HiperLCS frequency tolerance to ensure f_min is below f_brownout
C_softstart			0.33	uF	Softstart capacitor. Recommended values are between 0.1 uF and 0.47 uF
Ropto			1.9	k-ohms	Resistor in series with opto emitter
OV/UV pin lower resistor	10.50		10 5	k-ohm	III Warning. OV/UV resistor must be between 18 and 25 k-ohms. Too low value results in increased standby losses; Too large value can affect accuracy if OV/UV
	10.00		10.0		function
OV/UV pin upper resistor			0.88	M-ohm	Total upper resistance in OV/UV pin divider
LLC Capacitive Divider Current Sense Circuit					
Slow current limit Fast current limit	7.00		7.00 12.60		8-cycle current limit - check positive half-cycles during brownout and startup 1-cycle current limit - check positive half-cycles during startup
LLC sense capacitor				A pF	HV sense capacitor, forms current divider with main resonant capacitor
RLLC sense resistor				ohms	LLC current sense resistor, senses current in sense capacitor
IS pin current limit resistor			220	ohms	Limits current from sense resistor into IS pin when voltage on sense R is $< -0.5V$
IS pin noise filter capacitor			1.0		IS pin bypass capacitor; forms a pole with IS pin current limit capacitor
IS pin noise filter pole frequency			/24	kHz	This pole attenuates IS pin signal
Loss Budget					
LCS device Conduction loss			3.5	W	Conduction loss at nominal line and full load
Output diode Loss	-		5.0		Estimated diode losses
Transformer estimated total copper loss			1.33		Total copper loss in transformer (primary + secondary)
Transformer estimated total core loss Total transformer losses			1.5 2.9		Estimated core loss Total transformer losses
Total estimated losses			2.9		Total losses in LLC stage
Estimated Efficiency			94%		Estimated efficiency
PIN			194	W	LLC input power
Secondary Turns and Voltage Centering Calc	ulator				This is to help you choose the secondary turns - Outputs not connected to any other part of spreadsheet
V1			18.00		Target regulated output voltage Vo1. Change to see effect on slave output
V1d1 N1			0.50		Diode drop voltage for Vo1 Total number of turns for Vo1
N1 V1_Actaul			6.00 18.00		I otal number of turns for Vo1 Expected output
V2			5.00		Target output voltage Vo2
V2d2			0.70	V	Diode drop voltage for Vo2
N2 V2_Actual			2.00 5.47		Total number of turns for Vo2 Expected output voltage
Separate Series Inductor (For Non-Integrated	Transform	ner Only)			Not applicable if using integrated magnetics - not connected to any other part of spreadsheet
Lsep			67.00	uH	Desired inductance of separate inductor
Ae_Ind				cm^2	Inductor core cross-sectional area
-]	30		Number of primary turns
Inductor turns				mT	AC flux for core loss calculations (at f predicted and full load)

Expected peak primary current		7.0	A	Expected peak primary current
BP_fmin		298	mT	Peak flux density, calculated at minimum frequency fmin
Inductor Litz gauge		40	AWG	Individual wire strand gauge used for primary winding
Equivalent Inductor Metric Wire gauge		 0.080	mm	Equivalent diameter of wire in metric units
Inductor litz strands		125.00		Number of strands used in Litz wire
Inductor parallel wires		1		Number of parallel individual wires to make up Litz wire
Resistivity_25 C_Sep_Ind		 29.8	m-ohm/m	Resistivity in milli-ohms per meter
Inductor MLT		 7.00	cm	Mean length per turn
Inductor DCR 25 C		 62.6	m-ohm	Estimated resistance at 25 C (for reference)
Inductor DCR 100 C		83.9	m-ohm	Estimated resistance at 100 C (approximately 33% higher than at 25 C)
ACR_Sep_Inductor		 134.3	m-ohm	Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature
Inductor copper loss		 0.63	W	Total primary winding copper loss at 85 C
Feedback section				
VMAIN	Auto	18.0		Output voltage rail that optocoupler LED is connected to
ITL431_BIAS		1.0	mA	Minimum operating current in TL431 cathode
VF		1.0	V	Typical Optocoupler LED forward voltage at IOPTO_BJTMAX (max current)
VCE_SAT		0.3	V	Optocoupler transistor saturation voltage
CTR_MIN		0.8	5	Optocoupler minimum CTR at VCE_SAT and at IOPTO_BJT_MAX
VTL431_SAT		 2.5	V	TL431 minimum cathode voltage when saturated
RLED_SHUNT		1.0	k-ohms	Resistor across optocoupler LED to ensure minimum TL431 bias current is met
ROPTO_LOAD		4.70	k-ohms	Resistor from optocoupler emitter to ground, sets load current
IFMAX		 222.13	uA	FB pin current when switching at FMAX (e.g. startup)
IOPTO_BJT_MAX		 0.85	mA	Optocoupler transistor maximum current - when bursting at FMAX (e.g. startup)
RLED_SERIES_MAX		 6.34	k-ohms	Maximum value of gain setting resistor, in series with optocoupler LED, to ensure optocoupler can deliver IOPTO_BJT_MAX. Includes -10% tolerance factor.
		 	T	
			<u> </u>	