HiperLCS_042413; Rev.1.3; Copyright Power
Integrations 2013

Enter Input Parameters

Vbulk_nom
Vbrownout
Vbrownin
VOV_shut

VOV_restart
CBULK
tHOLDUP

Enter LLC (secondary) outputs

VO1
IO1
VD1
VD1
PO1
IO2
VD2
PO2
P_LLC

LCS Device Selection

Device
RDS-ON (MAX)

Cpri
Pcond_loss
Tmax-hs
Theta J-HS
Expected Junction temperature
Ta max
Theta HS-A

IN
INPUTS
INOTS INF
OUTPUTS UNITS

	220 V	Design Title

The spreadsheet assumes AC stacking of the secondaries

Main Output Voltage. Spreadsheet assumes that this is the regulated output
Main output maximum current
Forward voltage of diode in Main output
Output Power from first LLC output
Second Output Voltage
Second output current
Forward voltage of diode used in second output
Output Power from second LLC output
Specified LLC output power
!!! Warning. Device may be too large. Select smaller device
RDS-ON (max) of selected device
Equivalent Coss of selected device
Stray Capacitance at transformer primary
Conduction loss at nominal line and full load
Maximum heatsink temperature
Thermal resistance junction to heatsink (with grease and no insulator)
Expectd Junction temperature
Expected max ambient temperature
Required thermal resistance heatsink to ambient
HiperLCS_042413_Rev1-3.xIs; HiperLCS Half-Bridge, Continuous

Brownout threshold voltage. HiperLCS will shut down if voltage drops below this
. Allowable value is between 65\% and 76\% of Vbulk_nom. Set to 65\% for
max holdup time

Restart voltage after OV protection.
!!! Warning. CBULK is too small. Recommended value should be greater than 0.7 uF/W
Bulk capacitor hold up time

LLC Resonant Parameter and Transformer Calculations (generates red curve)

Vres_target
Po
f_target
Lpar
Lpri
Lres
Kratio
Cres
Lsec

m
n_eq
Npri
Nsec

f_predicted
f_res
f_brownout
f_par
f_inversion
Vinversion
Vres_expected

RMS Currents and Voltages

IRMS_LLC_Primary
Winding 1 (Lower secondary Voltage) RMS current Lower Secondary Voltage Capacitor RMS current Winding 2 (Higher secondary Voltage) RMS current Higher Secondary Voltage Capacitor RMS current Cres_Vrms

Desired Input voltage at which power train operates at resonance. If greater than Vbulk_nom, LLC operates below resonance at VBULK.
LLC output power including diode loss
Main Output voltage (includes diode drop) for calculating Nsec and turns ratio Desired switching frequency at Vbulk_nom. 66 kHz to 300 kHz , recommended $180-250 \mathrm{kHz}$
Parallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for non-integrated low-leakage transformer)
Primary open circuit inductance for integrated transformer; for low-leakage transformer it is sum of primary inductance and series inductor. If left blank, auto-calculation shows value necessary for slight loss of ZVS at $\sim 80 \%$ of Vnom Series inductance or primary leakage inductance of integrated transformer; if left blank auto-calculation is for $\mathrm{K}=4$
Ratio of Lpar to Lres. Maintain value of K such that $2.1<K<11$. Preferred Lres is such that $\mathrm{K}<7$.
Series resonant capacitor. Red background cells produce red graph. If Lpar, Lres, Cres, and n_RATIO_red_graph are left blank, they will be auto-calculated Secondary side inductance of one phase of main output; measure and enter value, or adjust value until f_predicted matches what is measured ;
Leakage distribution factor (primary to secondary). $>50 \%$ signifies most of the leakage is in primary side. Gap physically under secondary yields $>50 \%$, requiring fewer primary turns.
Turns ratio of LLC equivalent circuit ideal transformer
Primary number of turns; if input is blank, default value is auto-calculation so that f_predicted = f_target and $\mathrm{m}=50 \%$
Secondary number of turns (each phase of Main output). Default value is estimate to maintain $\mathrm{BAC}<=200 \mathrm{mT}$, using selected core (below)
Expected frequency at nominal input voltage and full load; Heavily influenced by n_eq and primary turns
Series resonant frequency (defined by series inductance Lres and C)
Expected switching frequency at Vbrownout, full load. Set HiperLCS minimum frequency to this value.
Parallel resonant frequency (defined by Lpar + Lres and C)
LLC full load gain inversion frequency. Operation below this frequency results in operation in gain inversion region.
LLC full load gain inversion point input voltage
Expected value of input voltage at which LLC operates at resonance.

Primary winding RMS current at full load, Vbulk_nom and f_predicted
Winding 1 (Lower secondary Voltage) RMS current
Lower Secondary Voltage Capacitor RMS current
Winding 2 (Higher secondary Voltage) RMS current
Higher Secondary Voltage Capacitor RMS current
Resonant capacitor AC RMS Voltage at full load and nominal input voltage
位

Trial transformer primary turns; default value is from resonant section
Trial transformer secondary turns; default value is from resonant section Trial transformer open circuit inductance; default value is from resonant section Trial value of series capacitor (if left blank calculated value chosen so f_res same as in main resonant section above
Trial transformer estimated Lres
Estimated value of Lpar for trial transformer
Estimated value of secondary leakage inductance
Ratio of Lpar to Lres for trial transformer
Estimated effective transformer turns ratio
Input voltage at LLC full load gain inversion point
New Series resonant frequency
New nominal operating frequency
Primary winding RMS current at full load and nominal input voltage (Vbulk) and f_predicted_trial
RMS current through Output 1 winding, assuming half sinusoidal waveshape Lower Secondary Voltage Capacitor RMS current
RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding
Higher Secondary Voltage Capacitor RMS current
Expected value of input voltage at which LLC operates at resonance.

Transformer Core

Enter transformer core cross-sectional area
Enter the volume of core
Area of window
Total Width of Bobbin
Enter the loss per unit volume at the switching frequency and BAC (Units same as $\mathrm{kW} / \mathrm{m}^{\wedge} 3$)
Mean length per turn
Number of Bobbin chambers
Winding separator distance (will result in loss of winding area)
Estimated core loss
First Quadrant peak flux density at minimum frequency.
AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)

Number of primary turns; determined in LLC resonant section
Individual wire strand gauge used for primary winding
Equivalent diameter of wire in metric units
Number of strands in Litz wire; for non-litz primary winding, set to 1
Primary window allocation factor - percentage of winding space allocated to primary
Winding window area for primary
\% Fill factor for primary winding (typical max fill is 60\%)
Resistivity in milli-ohms per meter
Estimated resistance at 25 C
Estimated resistance at 100 C (approximately 33\% higher than at 25 C)
Measured RMS current through the primary winding
Measured AC resistance (at 100 kHz , room temperature), multiply by 1.33 to approximate 100 C winding temperature
Total primary winding copper loss at 85 C
Number of layers in primary Winding

Note - Power loss calculations are for each winding half of secondary
Output Voltage (assumes AC stacked windings)
Secondary winding turns (each phase)
RMS current through Output 1 winding, assuming half sinusoidal waveshape
DC component of winding current
AC component of winding current
Individual wire strand gauge used for secondary winding
Equivalent diameter of wire in metric units
Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1
Resistivity in milli-ohms per meter
Estimated resistance per phase at 25 C (for reference)
Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)
Estimated Power loss due to DC resistance (both secondary phases)
Measured AC resistance per phase (at 100 kHz , room temperature), multiply by
1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C
Estimated AC copper loss (both secondary phases)
Total (AC + DC) winding copper loss for both secondary phases
Output capacitor RMS current
Secondary 1 output capacitor
Peak to Peak ripple voltage on secondary 1 output capacitor
Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current
Number of layers in secondary 1 Winding
Note - Power loss calculations are for each winding half of secondary
Output Voltage (assumes AC stacked windings)
Secondary winding turns (each phase) AC stacked on top of secondary winding 1
RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding
DC component of winding current
AC component of winding current
Individual wire strand gauge used for secondary winding
Equivalent diameter of wire in metric units
Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1

Resistivity_25 C_sec2
Transformer Secondary MLT
DCR_25C_Sec2
DCR_100C_Sec2
DCR_Ploss_Sec1
ACR_Sec2
ACR_Ploss_Sec2
Total winding 2 Copper Losses
Capacitor RMS current
Co2
Capacitor ripple voltage
Output rectifier RMS Current

Secondary 2 Layers

Transformer Loss Calculations

Primary copper loss (from Primary section)
Secondary copper Loss
Transformer total copper loss
AW_S
Secondary Fill Factor

Signal Pins Resistor Values

f min
Dead Time
Burst Mode
f_max
f_burst_star
f_burst_stop
DT/BF pin upper divider resistor
DT/BF pin lower divider resistor
Rstart
Start up delay

C_softstart
Ropto
OV/UV pin lower resistor

OV/UV pin upper resistor

LLC Capacitive Divider Current Sense Circuit

Slow current limit

Fast current limi

LLC sense capacito
RLLC sense resistor
IS pin current limit resistor
IS pin noise filter capacitor
IS pin noise filter pole frequency

Loss Budget

LCS device Conduction loss
Output diode Loss
Transformer estimated total copper loss
Transformer estimated total core loss
Total transformer losses
Total estimated losses
Estimated Efficiency
PIN
Secondary Turns and Voltage Centering Calculator
V1d1
N1
V1_Actaul
V2d2
N2
V2_Actual

Resistivity in milli-ohms per meter
ean length per turn
Estimated resistance per phase at 25 C (for reference)
Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)

Estimated Power loss due to DC resistance (both secondary halves)
Measured AC resistance per phase (at 100 kHz , room temperature), multiply by
1.33 to approximate 100 C winding temperature. Default value of ACR is twice the

DCR value at 100 C
Estimated AC copper loss (both secondary halves)
Total (AC + DC) winding copper loss for both secondary halves
Output capacitor RMS current
Secondary 2 output capacitor
Peak to Peak ripple voltage on secondary 1 output capacitor
Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current
Number of layers in secondary 2 Winding
Does not include fringing flux loss from gap
Total primary winding copper loss at 85 C
Total copper loss in secondary winding
Total copper loss in transformer (primary + secondary)
Area of window for secondary winding
\% Fill factor for secondary windings; typical max fill is 60\% for served and 75\% for unserved Litz

Minimum frequency when optocoupler is cut-off. Only change this variable based on actual bench measurements
Dead time
Select Burst Mode: 1, 2, and 3 have hysteresis and have different frequency thresholds
Max internal clock frequency, dependent on dead-time setting. Is also start-up frequency
Lower threshold frequency of burst mode, provides hysteresis. This is switching frequency at restart after a bursting off-period
Upper threshold frequency of burst mode; This is switching frequency at which a bursting off-period stops
Resistor from DT/BF pin to VREF pin
Resistor from DT/BF pin to G pin
Start-up resistor - resistor in series with soft-start capacitor; equivalent resistance
from FB to VREF pins at startup. Use default value unless additional start-up delay is desired
Start-up delay; delay before switching begins. Reduce R_START to increase delay
Resistor from VREF pin to FB pin, to set min operating frequency; This resistor plus Rstart determine f_MIN. Includes 7\% HiperLCS frequency tolerance to ensure f_min is below f_brownout
Softstart capacitor. Recommended values are between 0.1 uF and 0.47 uF Resistor in series with opto emitter
!!! Warning. OV/UV resistor must be between 18 and 25 k-ohms. Too low value results in increased standby losses; Too large value can affect accuracy if OV/UV function
Total upper resistance in OV/UV pin divider

8-cycle current limit - check positive half-cycles during brownout and startup
1-cycle current limit - check positive half-cycles during startup
HV sense capacitor, forms current divider with main resonant capacitor
LLC current sense resistor, senses current in sense capacitor
Limits current from sense resistor into IS pin when voltage on sense R is $<-0.5 \mathrm{~V}$
IS pin bypass capacitor; forms a pole with IS pin current limit capacitor
This pole attenuates IS pin signal

Conduction loss at nominal line and full load
Estimated diode losses
Total copper loss in transformer (primary + secondary)
Estimated core loss
Total transformer losses
Total losses in LLC stage
Estimated efficiency
LLC input power

This is to help you choose the secondary turns - Outputs not connected to any other part of spreadsheet
Target regulated output voltage Vo1. Change to see effect on slave output
Diode drop voltage for Vo1
Total number of turns for Vo1
Expected output
Target output voltage Vo2
Diode drop voltage for Vo2
Total number of turns for Vo2
Expected output voltage

Not applicable if using integrated magnetics - not connected to any other part of spreadsheet
Desired inductance of separate inductor
Inductor core cross-sectional area
Number of primary turns
67.00 uH
$0.53 \mathrm{~cm}^{\wedge} 2$

Expected peak primary current		7.0\|A		Expected peak primary current
BP_fmin				Peak flux density, calculated at minimum frequency fmin
Inductor Litz gauge		40 A	AWG	Individual wire strand gauge used for primary winding
Equivalent Inductor Metric Wire gauge		0.080 m	mm	Equivalent diameter of wire in metric units
Inductor litz strands		125.00		Number of strands used in Litz wire
Inductor parallel wires		1		Number of parallel individual wires to make up Litz wire
Resistivity_25 C_Sep_Ind		29.8	m-ohm/m	Resistivity in milli-ohms per meter
Inductor MLT		7.00	cm	Mean length per turn
Inductor DCR 25 C Inductor DCR 100 C		$\begin{aligned} & 62.6 \mathrm{n} \\ & 83.9 \mathrm{~m} \end{aligned}$	$\begin{aligned} & m \text {-ohm } \\ & \text { m-ohm } \end{aligned}$	Estimated resistance at 25 C (for reference) Estimated resistance at 100 C (approximately 33\% higher than at 25 C)
ACR_Sep_Inductor		134.3 m	m-ohm	Measured AC resistance (at 100 kHz , room temperature), multiply by 1.33 to approximate 100 C winding temperature
Inductor copper loss		0.63	W	Total primary winding copper loss at 85 C
Feedback section				
VMAIN	Auto	18.0		Output voltage rail that optocoupler LED is connected to
ITL431_BIAS		1.0	mA	Minimum operating current in TL431 cathode
VF		1.0	V	Typical Optocoupler LED forward voltage at IOPTO_BJTMAX (max current)
VCE_SAT		0.3		Optocoupler transistor saturation voltage
CTR_MIN		0.8		Optocoupler minimum CTR at VCE_SAT and at IOPTO_BJT_MAX
VTL431_SAT		2.5	V	TL431 minimum cathode voltage when saturated
RLED_SHUNT		1.0 k	k-ohms	Resistor across optocoupler LED to ensure minimum TL431 bias current is met
ROPTO_LOAD		4.70	k-ohms	Resistor from optocoupler emitter to ground, sets load current
IFMAX		222.13	UA	FB pin current when switching at FMAX (e.g. startup)
IOPTO_BJT_MAX		0.85	mA	Optocoupler transistor maximum current - when bursting at FMAX (e.g. startup)
RLED_SERIES_MAX		6.34	k-ohms	Maximum value of gain setting resistor, in series with optocoupler LED, to ensure optocoupler can deliver IOPTO_BJT_MAX. Includes -10\% tolerance factor.

