Design Example Report

<table>
<thead>
<tr>
<th>Title</th>
<th>2 W Non-isolated Power Supply using LinkSwitch™-TN LNK305P</th>
</tr>
</thead>
</table>
| Specification | Input: 85 VAC - 265 VAC
Output: 15 V / 130 mA (220 mApk) |
| Application | Motor Control |
| Author | Power Integrations Applications Department |
| Document Number | DER-47 |
| Date | April 7, 2014 |
| Revision | 1.1 |

Summary and Features
- Highly integrated solution
- Lowest possible component count
- No optocoupler or Zener diode required for regulation
- Thermal overload protection with automatic recovery
- Less than 300 mW no-load consumption
- Very high efficiency at full load

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com
Table Of Contents

1 Introduction ... 3
2 Power Supply Specification .. 4
3 Schematic ... 5
4 Circuit Description .. 6
 4.1 Bill of Materials .. 7
5 Performance Data .. 8
 5.1 Efficiency ... 8
 5.2 Regulation ... 9
 5.2.1 Line regulation .. 9
 5.2.2 Load regulation .. 9
 5.2.3 No-load input power ... 10
6 Output noise measurements .. 11
7 Revision History .. 12

Important Note:
This board is designed to be non-isolated. Please take necessary safety precautions.

Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.
1 Introduction

This document is a prototype engineering report describing a 15 V, 130 mA non-isolated power supply using a LNK305P from Power Integrations.

This document contains the power supply specification, schematic, bill of materials and measurements results.
2 Power Supply Specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>V_{IN}</td>
<td>85</td>
<td></td>
<td>265</td>
<td>V AC</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>f_{LINE}</td>
<td>47</td>
<td>50/60</td>
<td>63</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_{OUT}</td>
<td>15</td>
<td></td>
<td>150</td>
<td>V</td>
<td>[±3%]</td>
</tr>
<tr>
<td>Output Ripple Voltage</td>
<td>V_{RIPPLE}</td>
<td>130</td>
<td></td>
<td>220</td>
<td>mV</td>
<td>20 MHz Bandwidth</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{OUT}</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Total Output Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Output Power</td>
<td>P_{OUT}</td>
<td>1.95</td>
<td></td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Peak Output Power</td>
<td>P_{OUT_PEAK}</td>
<td>3.3</td>
<td></td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>T_{AMB}</td>
<td>0</td>
<td></td>
<td>70</td>
<td>°C</td>
<td>Open frame</td>
</tr>
</tbody>
</table>

Table 1 - Power Supply Specification
3 Schematic

Figure 1 - Schematic after AC rectification
4 Circuit Description

The tested power supply had an input stage including one diode for the rectification and a \(\pi \) filter (4.7 \(\mu \)F, 1 mH, 4.7 \(\mu \)F), but this stage is not included in the schematic, and may not be needed in other systems if EMI filtering is present.

The voltage across L1 is rectified and smoothed by D1 and C2 during U1’s off-time. To a first order, the forward voltage drop of D2 (slow diode used in the tests) and D1 (must be an ultrafast) can be considered similar. Therefore the voltage across C3 tracks the output voltage. The voltage across C3 is sensed and regulated via the resistor divider R1-R3 connected to U1’s EN-pin. Resistor R4 provides a small pre-load current (3.8mA) for operation down to 0mA output current.
4.1 Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Ref Des</th>
<th>Description/part number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1</td>
<td>16.9 kΩ, 1%, 0.25 W</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R3</td>
<td>2.2 kΩ, 1%, 0.25 W</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R4</td>
<td>3.9 kΩ, 5%, 0.5 W</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L1</td>
<td>1 mH, 220mArms</td>
<td>Tokin</td>
</tr>
<tr>
<td>5</td>
<td>C1</td>
<td>100 nF</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C2</td>
<td>100 μF, 35 V, low ESR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C3</td>
<td>0.47 μF, 50 V</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>D1</td>
<td>UF4005 (ultrafast diode)</td>
<td>Vishay</td>
</tr>
<tr>
<td>9</td>
<td>D2</td>
<td>1N4005 (normal p/n diode)</td>
<td>Vishay</td>
</tr>
<tr>
<td>10</td>
<td>U1</td>
<td>LNK305</td>
<td>Power Integrations</td>
</tr>
</tbody>
</table>

Table 2 - SMPS Bill of Materials
5 Performance Data
All measurements performed at room temperature, 50 Hz input frequency.

5.1 Efficiency

Figure 2 – Efficiency measurements vs input voltage (@130mA and 220mA load)
5.2 Regulation

5.2.1 Line regulation

![Figure 3 - Output voltage tolerance (in % of the nominal output voltage level) vs input voltage, at 0, 130mA and 220 mA load]

5.2.2 Load regulation

![Figure 4 - Load regulation (in % of the nominal output voltage level)]
5.2.3 No-load input power

![Graph showing no-load input power vs input voltage]

Figure 5 - No-load input power vs input voltage
6 Output noise measurements

Figure 6 - Output ripple at 230 Vac input and 130 mA load
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Revision</th>
<th>Description & changes</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Apr-05</td>
<td>TP</td>
<td>1.0</td>
<td>Initial release</td>
<td>VC/JC / AM</td>
</tr>
<tr>
<td>07-Apr-14</td>
<td>KM</td>
<td>1.1</td>
<td>Fix Circuit Description Text</td>
<td></td>
</tr>
</tbody>
</table>
For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits’ external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2013 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@powerint.com

GERMANY
Lindwurstrasse 114
80337, Munich
Germany
Phone: +49-89-527-39110
Fax: +49-89-527-39200
e-mail: eurossales@powerint.com

JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: japansales@powerint.com

TAIWAN
5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: taiwansales@powerint.com

CHINA (SHANGHAI)
Rm 2410, Charity Plaza, No. 88,
North Caoxi Road,
Shanghai, PRC 200030
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325

CHINA (SHENZHEN)
3rd Floor, Block A,
Zhongtou International Business
Center, No. 1061, Xiang Mei Rd,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828

INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560002
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: indiasales@powerint.com

ITALY
Via Milanesi 20, 3rd, Fl.
20099 Sesto San Giovanni
(MI) Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail: eurossales@powerint.com

KOREA
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Gangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: koreasales@powerint.com

SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: singaporesales@powerint.com

EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail: eurossales@powerint.com

APPLICATIONS HOTLINE
World Wide +1-408-414-9660

APPLICATIONS FAX
World Wide +1-408-414-9760

Power Integrations
Tel: +1 408 414 9660 Fax: +1 408 414 9760
www.powerint.com